

Informations techniques Schöck Isokorb® R

Janvier 2014

Service technique Hotline et Élaboration technique de projet

Téléphone: +32 9 261 00 70 Fax: +32 9 261 00 71 techniek@schock-belgie.be

Exigence et téléchargement du dossier d'assistance à la conception

Téléphone: +32 9 261 00 70 Fax: +32 9 261 00 71 info@schock-belgie.be www.schock-belgique.be

Service technique

Les ingénieurs du service technique seront heureux de répondre à vos questions en matière de statique, de construction et de physique du bâtiment et vous proposeront des solutions avec calculs et plans détaillés.

Pour cela, veuillez envoyer vos plans (plan au sol, coupes, données statiques) ainsi que l'adresse du projet de construction à:

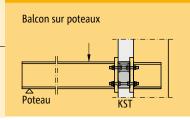
Schöck België bvba Kerkstraat 108 9050 Gentbrugge

Service technique
 Hotline et élaboration technique de projet

Tél.: +32 9 261 00 70 Fax: +32 9 261 00 71 techniek@schock-belgie.be

 Exigence et téléchargement du dossier d'assistance à la conception

Tél.: +32 9 261 00 70 Fax: +32 9 261 00 71 info@schock-belgie.be www.schock-belgique.be


Table des matières

	Page
Physique du bâtiment Protection thermique Le balcon comme pont thermique Exigences en termes de protection thermique Valeurs thermiques	7 - 12 8 9 10 - 11 12
Bases de planification Partenaires du projet	13 - 17 14
Conditions cadres / Inventaire Solution pour la rénovation / Principes de fonctionnement de l'Isokorb® R Aide à la conception	15 16 17
Conception de la structure	19 - 78
Remarques concernant la conception de la structure Résistance à la fatigue	20 - 21 22
Gamme de produits	23
Schöck Isokorb® modèles R Description des produits / tables de calcul et exemples / listes de contrôle	25 - 78
Exécution des travaux	79 - 129
Processus de montage chantier	80
Mortier d'injection Hilti HIT-RE 500	81
Béton de scellement (Cugla®) Schöck Isokorb® modèles R	81 83 - 129
Tableau pour l'entrepreneur / Instructions de montage / liste de contrôle de l'exécution des travaux	03 123

Variantes de raccordement / Aperçu des différents modèles

Schöck Isokorb® modèle RKS Balcons en porte-à-faux Physique du bâtiment Hauteur Isokorb® 160, 180, 200, 220 mm Bases de planification Conception de la structure Exécution des travaux Longueur Isokorb® 340 mm RK Balcons en porte-à-faux Physique du bâtiment Hauteur Isokorb® 180, 200, 220, 240, 250 mm Bases de planification Conception de la structure Exécution des travaux Longueur Isokorb® 1,00 m **Module KST** Balcons en porte-à-faux Hauteur Isokorb® Physique du bâtiment Variable Bases de planification Conception de la structure Exécution des travaux Longueur Isokorb® 180 mm RQS Balcon sur poteaux Physique du bâtiment Hauteur Isokorb® 160, 180, 200, 220 mm Bases de planification Conception de la structure #O Longueur Isokorb® Exécution des travaux 340 mm Poteau **RQP et RQP+RQP** Balcon sur poteaux avec charge ponctuelle Hauteur Isokorb® 180, 200, 220, 240, 250 mm

Poteau

Module KST

Hauteur Isokorb® Variable

Longueur Isokorb® 360 - 660 mm

Longueur Isokorb® 180 mm Page

7 - 12

13 - 17 25 - 38

83 - 90

7 - 12

13 - 17

39 - 50

91 - 99

7 - 12 13 - 17

51 - 54

7 - 12

13 - 17

55 - 66

107 - 114

101 - 105

Homologations et exigences

Schöck Isokorb® modèle RK

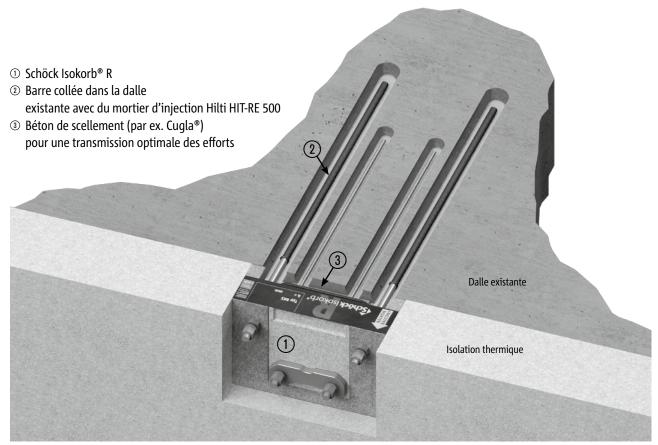
Pour le Schöck Isokorb® modèle RK, les dispositions particulières des agréments techniques Zulassung Z-15.7-240 et Z-15.7-297 s'appliquent.

Schöck Isokorb® modèle RQP / modèle RQP+RQP

Pour le Schöck Isokorb® modèle RQP et RQP+RQP, les dispositions particulières de l'agrément technique Zulassung Z-15.7-239 et les dispositions complémentaires et divergentes définie dans l'agrément technique Zulassung Z-15.7-297 s'appliquent.

Schöck Isokorb® modèle RKS / modèle RQS

Pour le Schöck Isokorb® modèle RKS et RQS, les dispositions particulières de l'agrément technique Zulassung Z-15.7-292 et les dispositions complémentaires et divergentes de l'agrément technique Zulassung Z-15.7-298 s'appliquent.

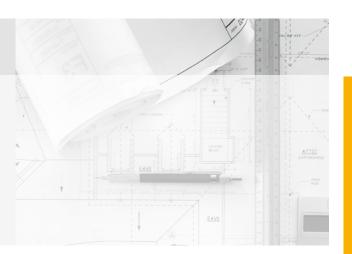

Mortier d'injection Hilti HIT-RE 500

Le raccordement rapporté des aciers de traction et des aciers d'effort tranchant du Schöck Isokorb® sur la dalle existante s'effectue à l'aide d'un raccordement d'armature avec mortier d'injection Hilti HIT-RE 500. Les dispositions de l'agrément technique européen ETA-08/0105 doivent être respectées.

Béton de scellement

La jointure de scellement de 4 cm de large entre la dalle existante et l'isolation du raccordement des dalles doit être comblée avec du béton de scellement (par ex. Cugla®), voir les exigences concernant le béton de scellement page 81. La face frontale de la dalle existante doit être façonnée dans la zone de raccordement du Schöck Isokorb® R en tant que joint rugueux ou cranté conformément à NBN-EN 1992 (selon le modèle Isokorb®).

- → Exigence et téléchargement des documents d'agrément Schöck Isokorb® (voir contact page 2)
- → Exigence et téléchargement des documents d'agrément Hilti HIT-RE 500 (voir contact page 81)


Situation de la mise en œuvre: Schöck Isokorb® modèle RKS pour le raccordement de balcons en charpente métallique à un plancher en béton armé

Physique du bâtiment

Bases de planification

Conception de la structure

Exécution des travaux

Physique du bâtiment Schöck Isokorb® R

Protection thermique

Réhabilitation énergétique

En raison des exigences de plus en plus strictes en matière d'économie d'énergie, une diminution des besoins en énergie doit être prise en compte; cette économie est clairement perceptible, surtout dans les bâtiments neufs. Des économies importantes sont également possibles avec les quelque 2 millions de constructions dans existantes. Plus des 2/3 du volume construit total en Suisse remonte à avant 1975. La plupart n'ont pas été réhabilités et présentent des performances énergétiques catastrophiques. Leurs besoins en énergie primaire sont beaucoup plus élevés que dans les constructions récentes. En plus de ne pas respecter l'environnement, ils multiplient les coûts annexes pouvant aller jusqu'à représenter un deuxième loyer.

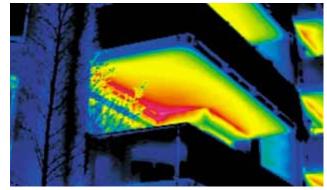
Il est évident que, dans ce cas, des économies peuvent facilement être réalisées. Une rénovation appropriée et des techniques de construction modernes peuvent contribuer à réduire les besoins en chauffage jusqu'à 80%. Ce potentiel doit être exploité pour aider à diminuer durablement les coûts en chauffage dans l'ensemble du parc immobilier et protéger l'environnement.

Lors d'une réhabilitation énergétique, l'enveloppe du bâtiment doit être améliorée du point de vue énergétique, par exemple en installant une isolation extérieure avec revêtement de façade. Les ponts thermiques, comme les dalles de balcon en continu, ne doivent pas être négligés, au risque d'entraîner des dommages sur le bâtiment.

Pont thermique: définition

Un pont thermique est une partie d'un ouvrage située dans l'enveloppe du bâtiment qui est à l'origine d'une augmentation de la déperdition thermique. L'augmentation de la déperdition thermique a pour conséquence une déformation de ladite partie de l'ouvrage (pont thermique géométrique) ou la présence de matériaux localisés dans la zone en question présentant une augmentation de leur conductivité thermique (pont thermique dû aux matériaux).

Effets des ponts thermiques


Dans la zone d'un pont thermique, les températures de surface sont inférieures à celles de la zone murale environnante. Au niveau des surfaces froides, on observe alors la présence d'eau condensée et la formation de moisissure. À partir d'un taux d'humidité de l'air de 80 %, les spores de moisissure se développent. De la moisissure peut apparaître derrière les papiers peints et les moquettes sans que l'on s'en aperçoive.

Si de la moisissure se forme dans la zone d'un pont thermique, la présence de spores de moisissure dans une pièce peut être à l'origine de troubles graves de la santé des habitants. Les spores de moisissure agissent comme des allergènes et peuvent ainsi provoquer des réactions allergiques violentes. Les troubles classiques sont par exemple des maux de tête, une grande fatigue, des maladies des voies respiratoires, voire de l'asthme. Une exposition quotidienne prolongée dans un logement peut entraîner un risque élevé d'allergie chronique.

Les ponts thermiques provoquent également une déperdition thermique importante. Plus une maison est bien isolée, plus les déperditions thermiques liées à un pont thermique diminuent. L'énergie perdue via un pont thermique peut représenter jusqu'à 20% du coefficient de déperdition par transmission.

Augmentation du risque de colonisation de moisissures

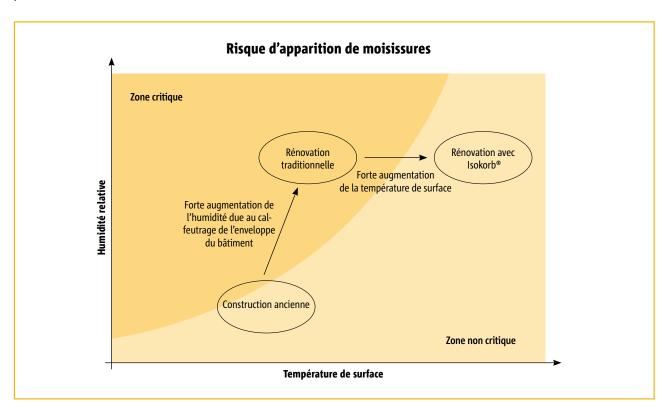
Augmentation de la déperdition de chaleur

Physique du bâtiment Schöck Isokorb® R

Le balcon comme pont thermique

Spécificités des raccordements de balcon

Dans le cas des raccordements des dalles de balcons sans traitement du pont thermique, la synergie des ponts thermiques géométriques (principe des ailerons d'un cylindre des dalles de balcon) et les ponts thermiques dus aux matériaux (conductivité thermique élevée d'une dalle en béton armé) produit un flux thermique de façon à ce que les raccordements du balcon sans traitement du pont thermique fassent partie des ponts thermiques critiques de l'enveloppe du bâtiment. Il s'ensuit alors une forte diminution de la température de surface dans la zone de raccordement et une déperdition considérable de l'énergie de chauffage.


Effets des raccordements des dalles de balcons sans traitement du pont thermique sur la réhabilitation thermique d'un bâtiment

Même lorsqu'aucun dégâts ne sont visibles sur la construction du bâtiment (formation de moisissures) malgré un balcon sans traitement du pont thermique, il est cependant indispensable de les séparer thermiquement dans le cadre d'une réhabilitation énergétique. Une réhabilitation énergétique a un impact sur l'humidité et la température de surface. Dans le cas d'une réhabilitation énergétique partielle, on observe alors souvent des dégâts sur la construction engendrés par les ponts thermiques restants.

La responsabilité incombe aux mécanismes suivants:

Lors d'une réhabilitation énergétique, une attention toute particulière est portée à la qualité du calfeutrage de l'enveloppe du bâtiment. Comme les bâtiments anciens présentent généralement de nombreux problèmes d'étanchéité, ce processus réduit le taux de renouvellement d'air à travers l'enveloppe du bâtiment. Avec pour conséquence une augmentation de l'humidité relative dans le bâtiment une fois la réhabilitation terminée.

L'équilibre ambiant dans les constructions antérieures entre une humidité relative faible et une température de surface basse est ainsi déplacé de façon inappropriée. Dans les bâtiments rénovés d'un point de vue énergétique, l'humidité relative augmente et la température de surface dans la zone d'un balcon sans traitement du pont thermique reste basse. De la condensation peut se former sur la surface. Le risque de formation de moisissure se trouve ainsi augmenté par rapport à un bâtiment non rénové. Dans le cas d'une réhabilitation énergétique complète qui inclue également la séparation thermique du balcon, la température de surface intérieure augmente. L'ouvrage se trouve ainsi dans une zone thermique non critique. En choisissant l'Isokorb® de type R de Schöck pour la rénovation de votre balcon, vous vous trouvez du bon côté.

Physique du bâtiment Bases de planification Conception de la structure Exécution des travaux

Les partenaires du projet et leurs tâches

L'«équipe de rénovation» est composée d'un architecte, d'un bureau d'étude en charge de la structure et d'une équipe d'exécution. La réussite du projet dépend également de la collaboration entre ces différentes équipes.

Architecte

- Coordination de la rénovation
- Recherche dossier de conception (architecture et structure)
- Inventaire avant travaux (dimension des composants)
 - dalles et murs (matériaux, épaisseur)
- Accord sur la conception du balcon avec le bureau d'étude structure
 - Type de balcon: en porte-à-faux/soutenu
 - Structure du balcon: acier/béton armé
 - Choix Schöck Isokorb® R
- Planning d'exécution et projet détaillé

Bureau d'études structure

- Inventaire avant travaux (système porteur)
 - Détermination de la structure (documents de planification, métré)
 - Détermination de la structure de matériau comme la qualité du béton, le taux d'armature, etc. (voir méthodes page 15)
- Évaluation de la résistance du système porteur existant
- Dimensionnement selon NBN-EN 1992-1-1: 6.2
- Choix Schöck Isokorb® R (voir chapitre conception de la structure)
- Réalisation de calculs et de plans de construction vérifiable.

Équipe d'exécution (conduite des travaux)

- Intégration dans la réception de la construction et la conception (éventuellement)
- Fabrication des raccordements de dalle coulés
- Exécution du protocole de montage

Important: l'utilité des raccordements d'armatures ultérieurs coulés ne peut être garantie que si les barres ont été montées par un personnel formé en conséquence et sous surveillance sur le chantier (voir ETA 08/0105, section 4.4). La formation peut être effectuée sur demande auprès de la société Hilti.

Pour chaque raccordement d'armature, un protocole de montage doit être respecté. Les schémas doivent être mis à disposition sur le chantier le temps des travaux et doivent être présentés sur demande au responsable de la surveillance. Comme les bons de livraisons, ils doivent être conservés au moins 5 ans après la fins des travaux par la société. Modèle: «Protocole de montage Hilti HIT-RE 500» (voir Téléchargement et Service Hilti page 81).

Service technique Schöck

Conseils concernant les aspects structurels et constructifs, et de physique du bâtiment à propos du Schöck Isokorb® R.

Conditions cadres / Inventaire avant travaux

Conditions cadres

Le cadre pour le raccordement de balcon Schöck Isokorb® possible est fixé par le bâtiment existant. Lors de la conception avec le Schöck Isokorb® R, il est indispensable de déterminer tous les paramètres importants et de les intégrer à la conception:

Dimensionnement de l'ouvrage Les dimensions et le dimensionnement du bâtiment existant doivent être consignés. L'en-

semble du bâti doit être examiné (inventaire du dimensionnement des composants).

Système porteur Le système porteur doit être déterminé et évalué par le bureau d'étude auteur de la

structure. Une attention toute particulière doit être portée aux dalles, aux poutres et aux

murs (inventaire du système porteur).

Type de construction Le type de construction (plancher en béton armé, nervuré, en poutres de bois, etc.) doit

être pris en compte lors de l'évaluation du système porteur.

Armature dans la dalle existanteLorsque la position, la section et la qualité des barres ne sont pas visibles, celles-ci

doivent être déterminées à l'aide d'une méthode adaptée en s'appuyant sur la documentation de la construction, consignées dans les plans d'exécution pour le recouvrement d'acier et marquées sur les composants lors de la phase d'exécution (voir ci-dessous). Dès la phase de conception, il est important de s'assurer que les trous forés n'endomma-

gent pas l'armature existante dans la dalle existante.

Résistance du béton de la dalle

existante

La résistance du béton de la dalle existante est un facteur d'influence important pour le

dimensionnement approprié de l'Isokorb® R (voir ci-dessous)

Contexte du projet de construction Bâtiment (in)habité?

Méthodes d'établissement de l'inventaire

La détermination de la résistance du béton, du taux d'armature et de la position précise de l'armature est déterminante pour une conception ultérieure précise.

Détermination de la résistance du béton

- Pull out Test, simple et précis, non destructif
- Rebound Test, moins précis, non destructif
- Carottage, non destructif
- (méthodes chimiques)

Détermination du taux d'armature avec position

- Découper le balcon éventuellement présent (aciers de traction et étrier visibles)
- Utilisation de dispositifs de détection d'armature (scanner, détecteur)

Par exemple, la société Hilti propose des systèmes adaptés, qui donnent des résultats très précis concernant l'armature présente dans les composants en béton armé. Hilti vous communiquera, sur demande, les données de contact des sociétés spécialisées dans la détection d'armature existante.

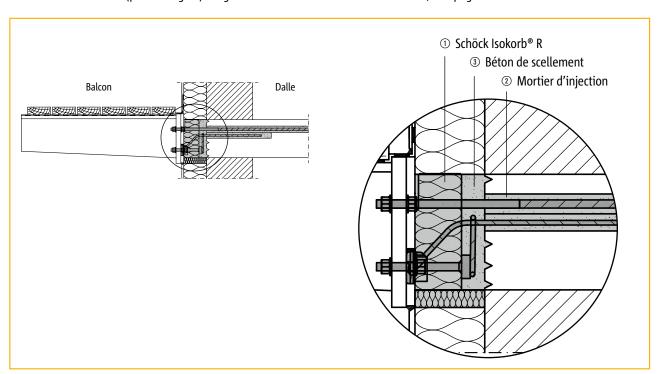
Service clients Hilti: tél. 0800 972 72 (appel local)

Solution pour la rénovation Schöck / Principes de fonctionnement de l'Isokorb® R

En principe, le mode d'action de la structure doit être contrôlé par le bureau d'étude en charge de la structure de l'ouvrage et la résistance doit être déterminée selon les normes en vigueur. En règle générale, la résistance de la dalle existante est le principal facteur d'influence pour les balcons raccordés avec le Schöck Isokorb® R.

Longueur du porte-à-faux pour la rénovation d'un balcon existant

Il faut partir du fait qu'au moment de réalisation de l'ouvrage, une armature supérieure suffisante pour la longueur du porte à faux du balcon existant est placée dans la dalle existante. Cette armature existante doit être vérifiée par le bureau d'étude en charge de la structure conformément aux normes en vigueur.


La nappe supérieure étant collée a posteriori, le Schöck Isokorb® R dispose d'un petit bras de levier (petite hauteur utile statique) comme la dalle en béton armé bétonnée d'origine. Le moment relevé est ainsi plus faible.

Portée d'un nouveau balcon monté sur une dalle existante

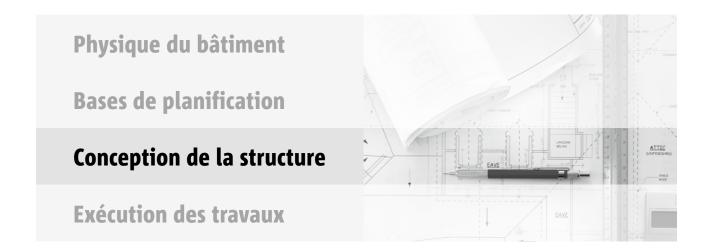
La portée potentielle d'un balcon fixé a posteriori s'adapte à la résistance de la dalle en béton, des poutres et des murs existants. L'armature présente doit être vérifiée conformément aux normes en vigueur.

Principes de fonctionnement de l'Isokorb® R

- ① Schöck Isokorb® R
- ② Barre collée dans la dalle existante avec du mortier d'injection Hilti HIT-RE 500 selon l'Agrément technique européen ETA-08/0105
- ③ Jointure de scellement d = 40 mm
 Béton de scellement (par ex. Cugla®): exigences concernant le béton de scellement, voir page 81.

Principes de fonctionnement de l'Isokorb® R

Aide à la conception


Schöck Isokorb®				Structure du balcon			
modèle ¹⁾ pour	Acier				Béton arm	é	
Composant de la structure				Construction en b	Construction en préfabriqué		
de la dalle ²⁾	Porte-à-faux³)	soutenu	suspendu	Porte-à-faux ³⁾	soutenu	soutenu	
Plancher en béton armé: Résistance du béton ≥ C20/25	RKS	RQS	RQS ⁵⁾	RK	RQP RQP+RQP	RKS	
Plancher en poutres de bois	KST ⁴⁾	KST	KST	-	-	-	
Liaison du voile	-	KST	KST ⁶⁾	_	-	-	

¹⁾ Hauteur Isokorb disponible, voir page 23 ²⁾ L'évaluation des dalles existantes par un bureau d'étude est nécessaire.

³⁾ Variante de raccordement généralement possible uniquement pour la réhabilitation énergétique d'un balcon existant ⁴⁾ Pour le montage, la dalle doit être ouverte

⁵⁾ La résistance indiquée dans les tables de calcul diminue avec la force de compression supplémentaire perpendiculaire au joint

⁶⁾ Le support mural doit pouvoir résister à la force de compression supplémentaire perpendiculaire au joint exercée

Remarques concernant la conception de la structure

Conception/plans1)

Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur et consigné sur des plans d'exécution. Les plans doivent être disponibles sur le chantier.

Les exigences énoncées aux sections 3 «Dispositions pour la conception et le calcul» et 4 «Dispositions pour l'exécution» et définies par les agréments techniques doivent être respectées pendant la conception et le calcul. À ce propos, nous nous basons sur les agréments Isokorb® suivants (voir également page 6):

Modèle RK: Zulassung Z-15.7-297 et Z-15.7-240
Modèle RQP, modèle RQP+RQP: Zulassung Z-15.7-297 et Z-15.7-239
Modèle RKS, modèle RQS: Zulassung Z-15.7-298 et Z-15.7-292

(Exigence et téléchargement des documents d'agrément Schöck Isokorb®; voir contact page 2)

Lorsque la position, la section et la qualité des barres ne sont pas visibles, ceux-ci doivent être déterminés à l'aide d'une méthode adaptée (par ex. des détecteurs d'armatures) en s'appuyant sur les documents de l'ouvrage, consignés dans les plans d'exécution pour le recouvrement d'acier et marqués sur les composants lors de la phase d'exécution.

Vérifier que la classe de résistance du béton de la dalle existante, dans laquelle le Schöck Isokorb® doit être inséré, n'est pas inférieure à C20/25.

Les points suivants doivent apparaître sur le plan d'exécution:

- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage.
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres coulées en fonction du modèle Isokorb® utilisé.
- Mesures des longueurs de marquage l_m et l_v ou l_{e,ges} sur l'extension mixte Hilti HIT-RE 500 selon ETA-08/0105, annexe 18.
- Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise, qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.

Système d'injection Hilti HIT-RE 500

Le collage du Schöck Isokorb® R dans la dalle existante est effectué avec le système d'injection Hilti HIT-RE 500. Les réglementations de l'Agrément technique européen ETA-08/0105 «Raccordement d'armature coulée ultérieur avec mortier d'injection Hilti HIT-RE 500» doivent être respectées.

- Distances entre les barres conformément aux «Règles générales de conception des armatures rapportées» selon ETA-08/0105, section 5
- Enrobage béton pour armatures rapportées selon: «Enrobage minimum min c pour l'armature rapportée en fonction de la méthode et de la tolérance de perçage» selon ETA 08/0105, section 8. La méthode de perçage admise est le perçage à percussion avec dispositif d'aide au perçage. Les règles des normes de dimensionnement doivent être respectées.

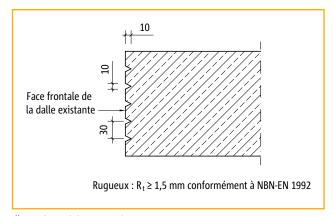
Les instructions de montage et les autres remarques concernant le montage du Schöck Isokorb® modèle R peuvent être consultées au chapitre Exécution des travaux, pages 79 - 129.

Forages abandonnés

- Dès la phase de conception, il est important de s'assurer que les trous forés n'endommagent pas l'armature existante dans la dalle existante.
- Le risque de forages abandonnés (armature touchée) peut être réduit en choisissant une hauteur d'Isokorb® inférieure à la hauteur de la dalle.

¹⁾ Exigences des homologations Zulassung Z-15.7-297 et Z-15.7-298 concernant le Schöck Isokorb® R

Remarques concernant la conception de la structure


Béton de scellement

La jointure de scellement de 4 cm de large entre la dalle existante et l'isolation du raccordement des dalles doit être comblée avec du béton de scellement (par ex. Cugla®), voir les exigences concernant le béton de scellement page 81.

Les instructions de montage et les autres remarques concernant le montage du Schöck Isokorb® modèle R peuvent être consultées au chapitre Exécution des travaux, pages 79 - 129.

Transmission de la force de cisaillement entre le béton de scellement et la dalle existante

Dans la zone de raccordement du Schöck Isokorb® R, la face frontale de la dalle existante doit être façonnée en tant que joint rugueux ou cranté conformément à la norme NBN-EN 1992 (selon le modèle Isokorb®). Cela permet de garantir une transmission de la force de cisaillement dans le joint entre le béton de scellement et la face frontale de la dalle existante.

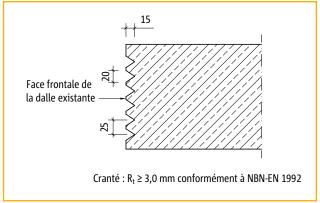


Illustration 1: joint composite: «rugueux»

Illustration 2: joint composite: «cranté»

Schöck Isokorb® modèle	RK	RKS	RQP	RQP+RQP	RQS8	RQS10	RQS12
Qualité de la surface de la face frontale de la dalle existante	rugueux	rugueux	rugueux	rugueux	rugueux	cranté	cranté

Domaine d'application

- Avec le Schöck Isokorb® modèle R, les dalles existantes ne peuvent pas être renforcées.
- Le champs d'application du Schöck Isokorb® modèle R s'étend aux balcons et aux planchers avec des charges à caractère principalement statique et uniformément réparties.

Caractéristiques requises pour les dalles

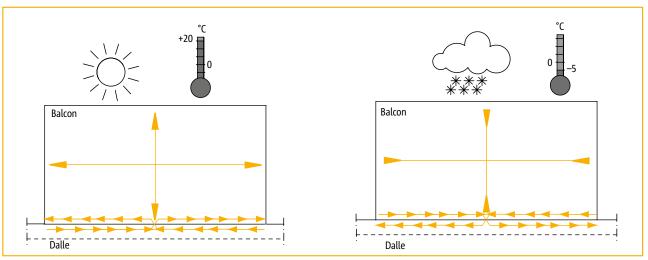
Résistance minimale du béton: ≥ C20/25

Épaisseur minimale de dalle: dépend du modèle Isokorb®

Armature (position, section, qualité): dépend du type de raccordement Isokorb® R envisagé

Pliage d'armatures

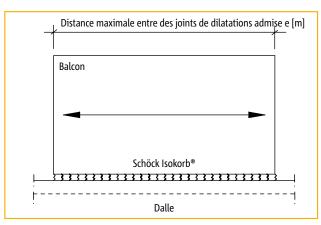
Lors de la fabrication du Schöck Isokorb® en usine, le dispositif de surveillance permet de s'assurer que les conditions de l'agrément technique et de la norme NBN-EN 1992 concernant le pliage d'armatures sont respectées.


Attention: si des armatures d'origine Schöck Isokorb® sont pliées ou pliées et dépliées sur le chantier, l'observation et le respect des conditions en question (agrément technique, NBN-EN 1992) sont indépendantes de la volonté de Schöck Bauteile GmbH. En cas de non-respect de ces conditions, notre garantie deviendrait caduque.

Résistance à la fatigue / Distance entre les joints de dilatation

Influence des changements de température

En plus de la stabilité de l'ouvrage, sa résistance à la fatigue doit également être vérifiée lorsque celui-ci est exposé à des contraintes changeantes et récurrentes. La vérification de la stabilité et la résistance à la fatigue permet d'exclure une fatigue des matériaux et ainsi une défaillance de l'ouvrage au cours de sa durée de vie envisagée.


En tant qu'ouvrages extérieurs, les balcons, passerelles et auvents sont exposés à tous types d'intempéries. Les variations de température qui en résultent sont ainsi à l'origine de leur déformation et de leur allongement.

Plan: déformations dues aux différences de température dans la zone de raccordement

Un raccordement avec le Schöck Isokorb® signifie: en raison de la dilatation et de la réduction de la dalle du balcon, les barres et les éléments de compression traversant l'isolation thermique sont déplacés de façon transversale jusqu'à plusieurs millimètres. Pour que les barres et le béton puissent résister à de nombreux changements de température sans être endommagés, les distances entre les joints de dilatation ancrés admissibles déterminées expérimentalement et indiquées dans l'homologation ne doivent pas être dépassées. Concrètement, cela signifie que la résistance à la fatigue des raccordements de balcon est assurée par l'observation des distances admissibles entre les joints de dilatation.

Les distances entre les joints de dilatation doivent être limitées selon l'homologation.

Plan: balcon

Le raccordement est durablement sans fatigue avec une formation constructive sans contrainte et à condition de respecter les distances maximales admises entre les joints de dilatation conformément à l'homologation.

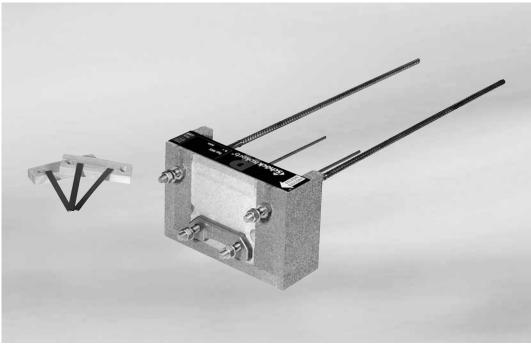
Les différents modèles Schöck Isokorb® ont, de par leurs différents types de construction et diamètres de la barre d'acier, des distances maximales admises entre les joints de dilatation différentes.

En cas de formation en angle, la distance maximale admise entre les joints de dilatation est réduite à e/2.

Pour connaître la distance maximale admise entre les joints de dilatation de l'Isokorb® modèle R, se référer aux tableaux de calcul aux chapitres des différents modèles, pages 25 - 78.

Gamme de produits / Remarque

	Schöck Isokorb® R						
Modèle de base	Capacité de résistance	Capacité de résistance Hauteur H [mm]		Désignation du modèle			
Modèle RK	RK25, RK45	180, 200, 220, 240, 250	1000	RK25-H180			
Modèle RQP	RQP10,	160, 180, 200	360	RQP10-H180			
	RQP40,	160, 180, 200	360				
	RQP60,	180, 200	460				
	RQP70	180, 200	660				
Modèle RQP+RQP	RQP10+RQP10,	160, 180, 200	360	RQP10+RQP10-H180			
	RQP40+RQP40,	160, 180, 200	360				
	RQP60+RQP60,	180, 200	460				
	RQP70+RQP70	180, 200	660				
Modèle RKS	RKS10, RKS14	160, 180, 200, 220	340	RKS10-H180			
Modèle RQS	RQS8, RQS10,	160, 180, 200, 220	340	RQS8-H180			
	RQS12	180, 200, 220	340				


Désignation du modèle dans les plans

(statique, publication, plans d'exécution, commande)

par ex.: RK25-H180 Modèle/capacité de résistance Hauteur Isokorb®

Structure de l'Isokorb® modèle R

Le corps d'isolation de l'Isokorb® modèle R avec coffrage inférieur (sauf modèle RK) et latéral en Neopor® sert également de coffrage perdu pour la formation de la jointure de scellement (d = 40 mm) entre l'Isokorb® et la face frontale de la dalle existante. (Pour les dimensions, se référer au chapitre de chaque modèle).

Schöck Isokorb® modèle RKS

Le Schöck Isokorb® modèle RKS est un élément porteur et isolant pour le raccordement de balcons en acier à des dalles en béton armé existantes. Il transmets les moments négatifs, les efforts tranchants positifs et les efforts horizontaux.

Schöck Isokorb® modèle RKS

Homologations / Exigences / Matériaux / Protection anticorrosion

Homologations / Exigences

Schöck Isokorb® modèle RKS: Zulassung Z-15.7-298

Mortier d'injection Hilti HIT-RE 500: Zulassung Z-21.8-1790 en ETA-08/0105

Matériaux Schöck Isokorb®

Armature B 500 (selon NBN-EN 1992)

Paliers de compression dans le mortier de scellement S 235 JRG1, S355 JO

Acier inoxydable N° matériau: 1.4401, 1.4404, 1.4362, 1.4462 et 1.4571,

S 460 selon homologation n°: Z-30.3-6

Ouvrage et attaches en acier inoxydable et BSt 500 NR

Plaque de compression dans la zone extérieure N° matériau: 1.4404, 1.4362 et 1.4571 ou de qualité supérieure,

par ex. 1.4462

Cales N° matériau: 1.4401 S 235, épaisseur 2 mm et 3 mm Isolation Polystyrène expansé (Neopor®1), λ = 0,031 W/m · K,

Classification du matériau B1 (difficilement inflammable)

Eléments raccordés

Armature B 500 (selon NBN-EN 1992)

Béton normal côté dalle, classe de résistance minimale du béton C20/25

et en fonction de la classe d'exposition selon NBN-EN 1992

Armature Au moins S 235 côté balcon; classe de résistance, justificatif statique

et protection anticorrosion selon ingénieur de stabilité

Protection anticorrosion

- L'acier inoxydable utilisé sur le Schöck Isokorb® modèle RKS correspond au numéro de matériau: 1.4362, 1.4401, 1.4404 ou 1.4571. Ces aciers sont, selon l'agrément technique Zulassung Z-30.3-6, annexe 1 «des ouvrages et des éléments de raccordements en aciers inoxydable» de la classe de résistance III/classification moyenne.
- Le raccordement du Schöck Isokorb® modèle RKS associée à une platine frontale galvanisée et enduite d'une protection anticorrosion est sans risque du point de vue de la résistance à la corrosion de contact (voir homologation Z-30.3-6, section 2.1.6.4). Pour les raccordements Schöck Isokorb® modèle RKS, la surface du métal non précieux (platine frontale en acier) est plus importante que celle de l'acier inoxydable (tiges, rondelles et tasseaux), de façon à éviter toute défaillance du raccordement suite à une corrosion de contact.

¹⁾ Neopor® est une marque déposée de BASF

Exemples de calepinage des éléments

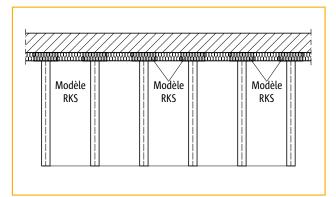


Illustration 1: rénovation d'un balcon existant avec modèle RKS14, en porte-à-faux

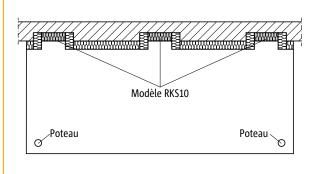


Illustration 2: montage d'un balcon sur une dalle existante avec modèle RKS10, construction soutenue

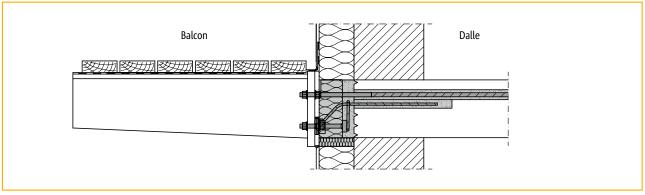


Illustration 3: balcon en porte-à-faux avec modèle RKS14 lors de la rénovation d'un balcon existant

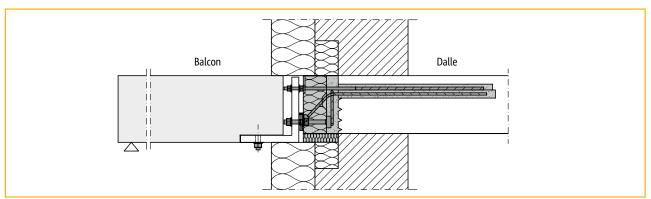
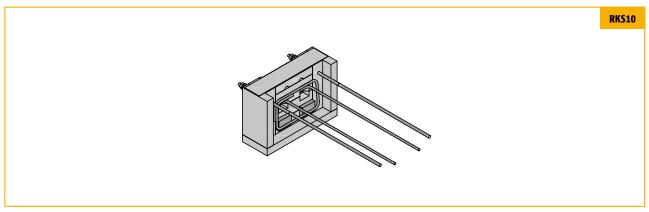
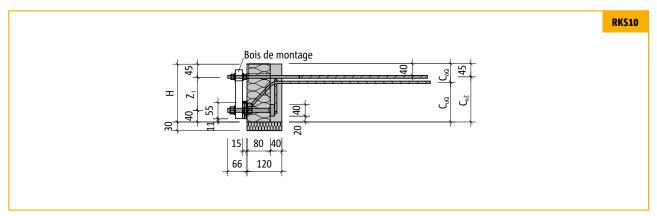
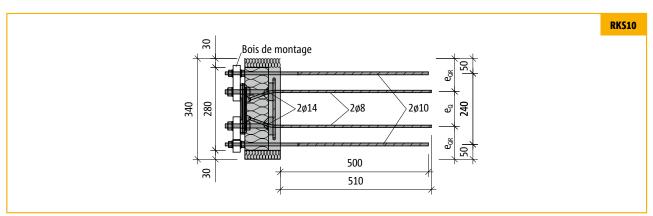
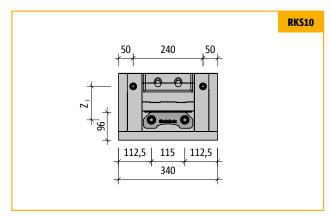
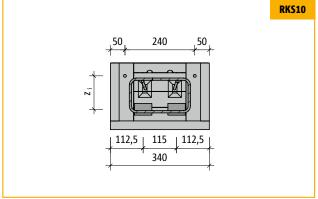




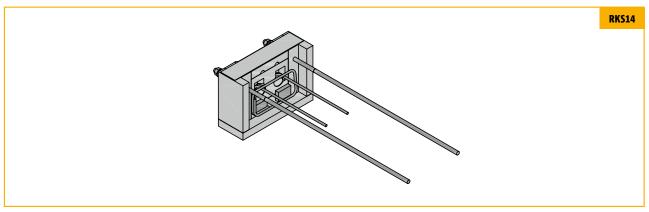
Illustration 4: montage d'un balcon préfabriqué sur une dalle existante avec modèle RKS10, construction soutenue


Description du produit

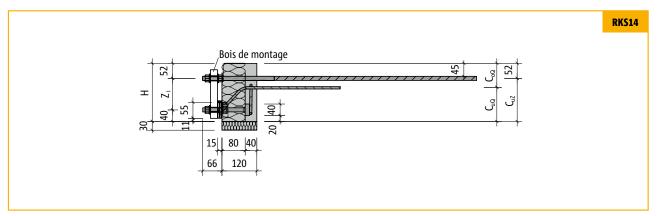

Isométrie: Schöck Isokorb® modèle RKS10


Coupe: Isokorb® modèle RKS10

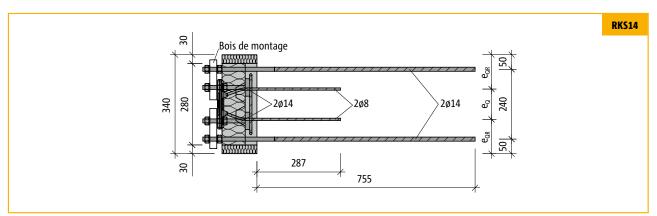
Plan: Schöck Isokorb® modèle RKS10

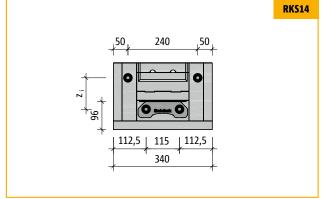


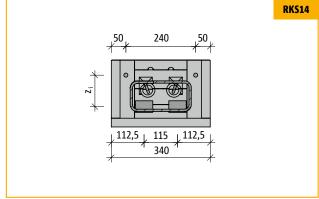
Vue latérale extérieure: Schöck Isokorb® modèle RKS10



Vue latérale intérieure: Schöck Isokorb® modèle RKS10


Description du produit

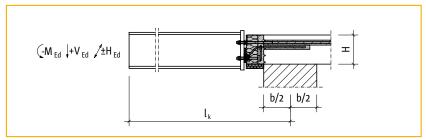

Isométrie: Schöck Isokorb® modèle RKS14


Coupe: Isokorb® modèle RKS14

Plan: Schöck Isokorb® modèle RKS14

Vue latérale extérieure: Schöck Isokorb® modèle RKS14

Vue latérale intérieure: Schöck Isokorb® modèle RKS14


Description du produit

	Schöck Isokorb® modèle		RKS10			RKS14			
	Hauteur Isokorb® H [mm]		180	200	220	160	180	200	220
	Longueur Isokorb® [mm]	340			34	40			
	Aciers de traction (l _{v,dalle} in mm)		2 ø 10	(497)			2 ø 14	(755)	
	Aciers d'effort tranchant (l _{v,dalle} in mm)		2 ø 8	(510)			2 ø 8	(287)	
	Paliers de compression	2 ø 14		2 ø 14					
Docarintian	z _i [mm]	75	95	115	135	68	88	108	128
Description du produit	C _{oz} [mm]	45	45	45	45	52	52	52	52
du produit	C _{uz} [mm]	115	135	155	175	108	128	148	168
	C _{oQ} [mm]	44	44	64	84	44	64	84	104
	C _{uQ} [mm]	116	136	136	136	116	116	116	116
	e _Q [mm]	104	118	118	118	104	104	104	104
	e _{QR} [mm]	118	111	111	111	118	118	118	118

z_i Bras de levier intérieur
C_{OZ} Entraxe des aciers de traction du bord supérieur de l'Isokorb®
C_{UZ} Entraxe des aciers de traction du bord inférieur de l'Isokorb® (bord de la dalle)
C_{OQ} Entraxe des aciers d'effort tranchant du bord supérieur de l'Isokorb®
C_{UQ} Entraxe des aciers d'effort tranchant du bord inférieur de l'Isokorb® (bord de la dalle)
e_Q Entraxe des aciers d'effort tranchant entre eux
e_{QR} Entraxe des aciers d'effort tranchant du bord extérieur de l'Isokorb®

Table de calcul

Les valeurs de conception doivent se rapporter à l'axe du mur.

Combinaison d'actions selon les forces s'appliquant

Schöck Isokorb® modèle		RKS10	RKS14
Valeurs de	Résistance du béton	≥ C2	0/25
conception pour	Surface de la face frontale de la dalle	rugueux	rugueux
		M _{Rd} [kNm]
	160	-3,1	-6,3
	180	-3,9	-8,1
	200	-4,7	-10,0
	220	-5,5	-11,8
		Effort tranc	nant V _{Rd} [kN]
	160 - 220	+28,0	+15,0
	Effort horizontal H _{Rd} [kN] ¹⁾		ntal H _{Rd} [kN]¹¹
	160 - 220	±2,5	±2,5
		Facteur de déform	nabilité tan $lpha$ [%]
Hauteur	160	0,5	0,9
Isokorb® H [mm]	180	0,4	0,7
	200	0,3	0,6
	220	0,3	0,5
		Ressort de rota	tion C [kNm/rad]
	160	600	700
	180	1000	1200
	200	1500	1700
	220	1800	2400
		Distance max. entre des	joints de dilatations [m]
	160	5,1	5,1
	180 - 220	5,8	5,1

¹⁾ Pour l'absorption des efforts horizontaux (H_{Ed}) parallèles au mur extérieur, un effort tranchant d'au moins 2,9 · H_{Ed} doit être garanti.

Conception de la structure

Schöck Isokorb® modèle RKS

Remarques

Les remarques concernant la conception de la structure, pages 20 - 23, doivent être prises en compte.

Charges ascendantes

Les efforts tranchants dirigés vers le haut (par ex. traction due au vent) ne peuvent pas être repris par le Schöck Isokorb® modèle RKS

Vérifications à l'état limite de l'aptitude au service

Pour les vérifications à l'état limite de l'aptitude au service, les valeurs d'élasticités du Schöck Isokorb® doivent être prises en compte. Dans la mesure où une étude du comportement de vibration de la construction en acier raccordée est nécessaire, les déformations supplémentaires résultant du Schöck Isokorb® doivent être prises en compte.

Contre-flèche

Les facteurs de déformabilité indiqués dans le tableau résultent uniquement des allongements élastiques de l'acier du Schöck Isokorb®. La contre-flèche définitive du balcon résulte du calcul de la déformation du balcon raccordé et de la déformation provenant du Schöck Isokorb®.

Déformation (ü) due à Schöck Isokorb® $\ddot{\mathbf{u}}$ [mm] = $\tan \alpha \cdot \mathbf{l_k} \cdot \mathbf{10} \ \mathbf{M_{Ed}} / \mathbf{M_{Rd}}$

 $tan \alpha$ Facteur de déformation (voir table de calcul)

l, Longueur du porte-à-faux [m]

Moment fléchissant dépendant du dimensionnement pour le calcul de la contre-flèche.

La combinaison d'actions préparées pour cela peut être déterminée par le spécialiste de l'analyse des forces de précontraintes.

M_{n.a} Valeurs de conception du moment fléchissant pour le Schöck Isokorb®

Remarque:

Les valeurs indiquées servent uniquement d'approximation pour l'évaluation de la déformation du Schöck Isokorb®. En fonction de la situation de la mise en œuvre et du montage, d'autres composantes de déformation à prendre en compte peuvent apparaître.

Distance entre les joints de dilatation

La détermination de la distance entre joints admise se fait à partir de la poutre métallique de la dalle de balcon en béton armé solidement raccordée. Si des mesures constructives pour le glissement entre la dalle du balcon et chaque poutre métallique sont prises, alors seules les distances des raccordements inamovibles faconnés prévalent.

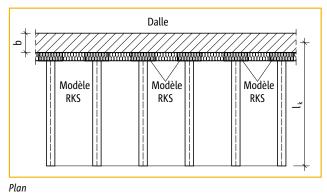
Distance au bord et des éléments

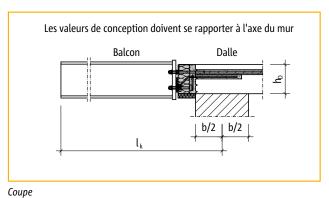
La distance de l'axe de l'ouvrage des Schöck Isokorb® modèles RKS et RQS au bord de l'ouvrage doit être d'au moins 190 mm; la distance entre chaque axe ne doit pas dépasser 340 mm.

Tolérance de montage

Seules des écarts verticaux peuvent être compensés par construction par les Schöck Isokorb® modèles RKS/RQS lors du montage ultérieur des poutres métalliques. La tolérance est de: +10 mm à la verticale et ±0 mm à l'horizontale. C'est pourquoi les Isokorb® modèles RKS/RQS doivent être posés selon des dimensions précises.

Cette précision doit être indiquée à la société chargée de la fabrication des raccordements de dalle rapportés dans le plan d'exécution. Pour un raccordement fonctionnel de la charpente métallique et du gros œuvre ne nécessitant aucune finition ni ajustement, le maître d'œuvre doit vérifier que les tolérances sont respectées et prises en compte dans la construction métallique.


Astuce:


Une fois le nouveau balcon terminé (charpente métallique ou préfabriqué), ne commencer que lorsque les Schöck Isokorb® modèle R ont été mis en place et que leur position définitive a été déterminée grâce à un relevé des cotes précis (mm).

Conception de la structure

Schöck Isokorb® modèle RKS

Exemple de calcul

Planifié: balcon en porte à faux avec modèle RKS

Dimension: Porte-à-faux

(l, doit être au centre du mur)

Épaisseur de la dalle

Entraxe des raccordements Isokorb®

Hypothèse

Sollicitations:

Poids propre avec revêtement léger de charges

Charge utile

Poids propre du garde-corps

= 1,80 m

 $h_{D} = 200 \text{ mm}$

a = 0,70 m

 $g = 0.6 \text{ kN/m}^2$

 $q = 4,0 \text{ kN/m}^2$

 $F_c = 0.75 \text{ kN/m}$

$$\begin{split} &M_{_{Ed}} = -[(\gamma_{_{G}} \cdot g + \gamma_{_{Q}} \cdot q) \cdot l_{_{k}}^{\; 2}/2 \cdot a + \gamma_{_{G}} \cdot F_{_{G}} \cdot l_{_{k}} \cdot a] \\ &M_{_{Ed}} = -[(1,35 \cdot 0,6 + 1,5 \cdot 4,0) \cdot 1,80^{2}/2 \cdot 0,7 + 1,35 \cdot 0,75 \cdot 1,80 \cdot 0,7] \end{split}$$

 $M_{Ed} = -9.0 \text{ kNm}$

 $\begin{aligned} &V_{_{Ed}} = + (\gamma_{_{G}} \cdot g + \gamma_{_{Q}} \cdot q) \cdot l_{_{k}} \cdot a + \gamma_{_{G}} \cdot F_{_{G}} \cdot a \\ &V_{_{Ed}} = + (1,35 \cdot 0,6 + 1,5 \cdot 4,0) \cdot 1,8 \cdot 0,7 + 1,35 \cdot 0,75 \cdot 0,7 \end{aligned}$

 $V_{Ed} = +9,3 \text{ kN}$

Existant: dalle de balcon en béton armé

Dimensions: Épaisseur de la dalle de balcon $h_{D} = 200 \text{ mm}$

Armature: Armature de la poutre exist. dans le sens du porte-à-faux #Ø8-150 Diamètre des barres longitudinales porteur du TS 8 mm

Enrobage béton de l'armature de traction supérieure

c_v = 30 mm dans le sens du porte-à-faux

Qualité minimale

du béton: Intérieur C20/25

existant: Qualité de béton B35/25 de la dalle existante

Schöck Isokorb® modèle RKS

Exemple de calcul / Remarques

Note de calcul modèle Schöck Isokorb®

Sélectionné: Schöck Isokorb® modèle RKS14-H200

```
\begin{array}{lll} M_{Ed} &= -9.0 \text{ kNm} &\geq & M_{Rd} = -10.0 \text{ kNm} \ \sqrt{\phantom{0}} & & & & & & & \\ W_{Ed} &= +9.3 \text{ kN} &\leq & V_{Rd} = +15.0 \text{ kN} \ \sqrt{\phantom{0}} & & & & & & \\ W_{Rd} &= 0.0 \text{ kN} &\leq & H_{Rd} = \pm 2.5 \text{ kN} \ \sqrt{\phantom{0}} & & & & & \\ \end{array}
```

Note de calcul de la dalle existante pour la charge présente

Section nécessaire de l'armature dans la dalle existante pour la continuité des efforts de traction du moment fléchissant (calcl k_a):

```
d_{dalle} = 200 - 30 - 8/2 = 166 \text{ mm } (16,6 \text{ cm})

M_{Ed} = -9,0 \text{ kNm}

b = 0,45 \text{ m}
```

La distance d'influence «b» de l'armature de la dalle est déterminée par le Bureau d'étude en charge de la structure. Elle ne doit pas être supérieure à l'entraxe «a» du raccordement de l'Isokorb®.

```
b = 450mm

#Ø8-150 \rightarrow A<sub>s</sub> = 0,45 · 335 = 150 mm2

xu = 435 · 150 / (0,75 · 450 · 13,3) = 14,5 mm

z = 166 - 7/18 · 14,5 = 160 mm

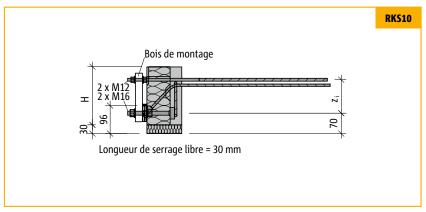
M<sub>D-4</sub> = -160 · 435 · 150 = -10,44 kNm ≤ -9,0 kNm
```

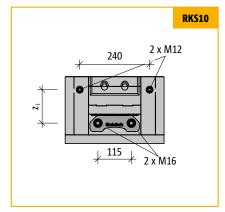
Si a néc. > a exist., réduire la charge et / ou le porte-à-faux l, jusqu'a ce que a néc. ≤ a exist.

La longueur de l'ancrage existant $l_v = 755$ mm des aciers de traction du modèle RKS14 nécessite, sur la base des longueurs d'ancrage et de recouvrement maximales selon NBN-EN 1992, un enrobage béton $c_1 = 30$ mm et une longueur de filetage en acier inoxydable $c_1 = 60$ mm au niveau de la face frontale de la dalle ainsi qu'un écart entre les barres des aciers de traction maximal de 8 d_c.

```
l_v = l_s + c_1 + 4d_s

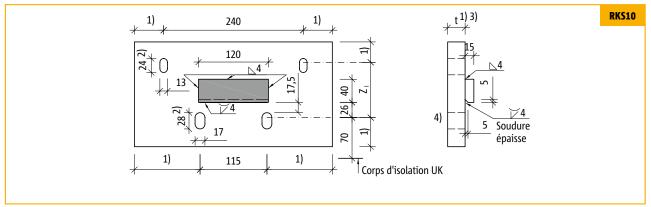
l_v = 639 \text{ mm} + 60 \text{ mm} + 4 \cdot 14 \text{ mm}
```


En cas de dépassement des distances des aciers de traction de 8 d_s, la longueur de recouvrement de l'armature de la dalle et de l'Isokorb® selon NBN-EN 1992 doit être vérifiée.


Tenir compte des conflits entre les barres l'Isokorb® et l'armature de dalle existante lors de la conception.

Avec l'Isokorb®, la dalle existante ne peut pas être renforcée.

34


Charpente métallique / Platines frontales structurales

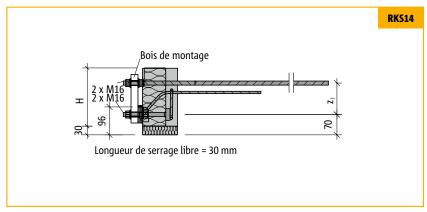
Vue latérale: Schöck Isokorb® modèle RKS10

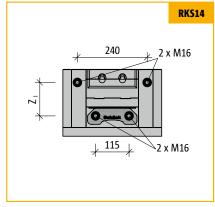
Vue de face: Schöck Isokorb® modèle RKS10

Platine frontale structurale pour Schöck Isokorb® modèle RKS10

Schöck Isokorb® modèle		RKS10
Bras de levier intérieur		z _; [mm]
	160	75
Hauteur Isokorb®	180	95
H [mm]	200	115
	220	135

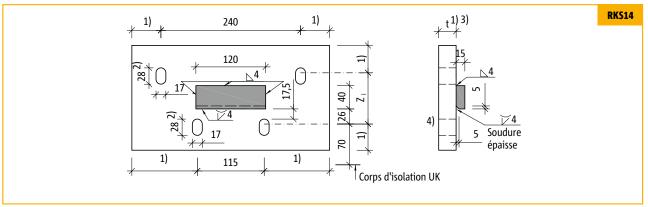
Remarques


- Le tasseau est nécessaire pour la transmission des efforts tranchants! Voir page 37.
- > Type d'acier en fonction des besoins statiques. Appliquer un produit de protection anticorrosion après soudage.
- Charpente métallique: les tolérances du gros-œuvre doivent impérativement être vérifiées!


¹⁾ Selon instructions du spécialiste de l'analyse des forces de précontraintes

²⁾ La taille du trou correspond à un ajustement vertical de +10mm. L'augmentation de la taille du trou permet d'augmenter l'ajustement vertical.

³⁾ Respecter la longueur de serrage libre: 30 mm pour RKS10 et RKS14.


Charpente métallique / Platines frontales structurales

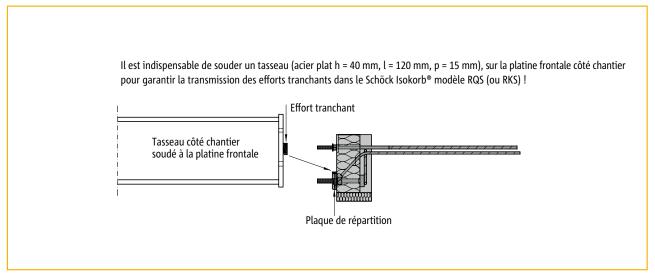
Vue latérale: Schöck Isokorb® modèle RKS14

Vue de face: Schöck Isokorb® modèle RKS14

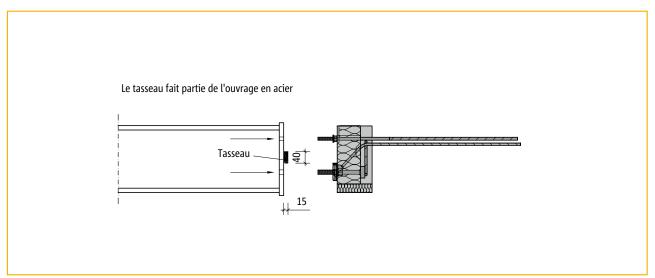
Platine frontale chantier pour Schöck Isokorb® modèle RKS14

Schöck Isokorb® modèle		RKS14
Bras de levier intérieur		z _i [mm]
	160	68
Hauteur Isokorb® H [mm]	180	88
	200	108
	220	128

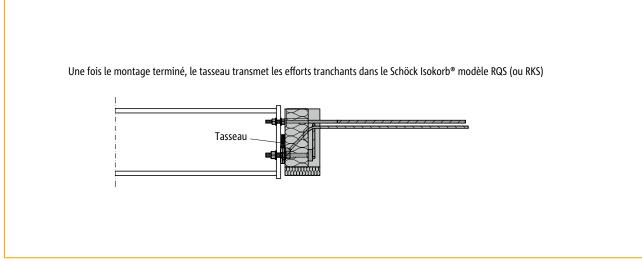
Remarques


- Le tasseau est nécessaire pour la transmission des efforts tranchants! Voir page 37.
- Type d'acier en fonction des besoins statiques. Appliquer un produit de protection anticorrosion après soudage.
- Charpente métallique: les tolérances du gros-œuvre doivent impérativement être vérifiées!

 $^{^{\}mbox{\tiny 1)}}$ Selon instructions du spécialiste de l'analyse des forces de précontraintes


²⁾ La taille du trou correspond à un ajustement vertical de +10mm. L'augmentation de la taille du trou permet d'augmenter l'ajustement vertical.

³⁾ Respecter la longueur de serrage libre: 30 mm pour RKS10 et RKS14.

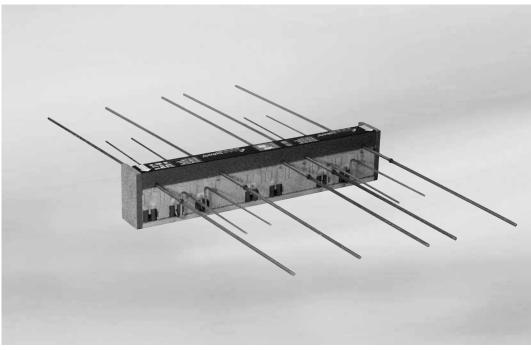

Charpente métallique / tasseau structural

Tasseau nécessaire sur la platine frontale

Montage de la poutre métallique sur le Schöck Isokorb® destiné à la rénovation

Le tasseau repose maintenant sur la plaque de répartition. Glisser des cales (fournies à la livraison) sous le tasseau pour le rattrapage des niveaux

Conception de la structure


RKS

Schöck Isokorb® modèle RKS

Liste de contrôle

ш	Le differsionnement des sotticitations sur le schock isonord a-t-it été déterminé:							
	Le porte-à-	faux du système a-t-il été	é utilisé pour cela?					
	La qualité du béton de la dalle a-t-elle été analysée et sert-elle de base du calcul?							
	Les distanc	es maximales entre les jo	oints de dilatation ont-elles été respectées?					
	Les distanc	es aux bords et entre les	éléments ont-elles été respectées?					
	La direction	n d'évacuation de l'eau a-	-t-elle été prise en compte dans les instructions concernant la contre-flèche?					
	L'armature	de raccordement indispe	ensable dans la dalle existante est-elle présente?					
	La longueu	r totale et la hauteur tot	ale du corps d'isolation pour les plans de coffrage ont-elles été respectées?					
	Les tasseau	ıx bilatéraux indispensab	oles ont-ils été suffisamment mis en évidence dans le plan d'exécution (page 37)?					
	Les couples de serrage des vis de raccordement ont-ils été consignés dans le plan d'exécution (voir aussi page 90)? Les écrous doivent être serrés sans précontrainte définie; les couples de serrage suivants doivent être appliqués:							
	RKS10 RKS14	Aciers de traction	(tige Ø 12): M _r = 40 Nm (tige Ø 16): M _r = 50 Nm (tige Ø 16): M _r = 50 Nm (tige Ø 16): M _r = 50 Nm					
	Les composants du système à utiliser avec le Schöck Isokorb® R ont-ils été consignés dans le plan d'exécution? Mortier d'injection Hilti HIT-RE 500 Béton de scellement (par ex. Cugla®). Voir également le chapitre Exécution des travaux (page 79 ff).							
	-	-	d'exécution des agréments Zulassung Z-15.7-297 et elles été respectées? (voir page 20).					

Schöck Isokorb® modèle RK

Le Schöck Isokorb® modèle RK avec module HTE est un élément porteur et isolant pour le raccordement de balcons en béton armé à des dalles en béton armé existantes. Il transmet les moments négatifs et les efforts tranchants positifs.

RK

Schöck Isokorb® modèle RK

Homologations / Exigences / Matériaux

Homologations / Exigences

Schöck Isokorb® modèle RK: Zulassung Z-15.7-297

Mortier d'injection Hilti HIT-RE 500: Zulassung Z-21.8-1790 en ETA-08/0105

Matériaux Schöck Isokorb®

Armature B 500 (selon NBN-EN 1992)

Armature S 235 JRG1

Acier inoxydable Armature de haute adhérence (HA) BSt 500 NR, n° matériau 1.4362 ou 1.4571

Aciers de traction n° matériau 1.4362 (f_{vk} = 700 N/mm²)

Barre d'acier lisse, n° matériau 1.4571 ou 1.4404 de niveau de consolidation S 460

Paliers de compression Module HTE (Paliers de compression en béton de fibres aciers de haute résistance (HTE))

Gaine plastique PE-HD

Isolation Polystyrène expansé (Neopor®)¹¹, λ = 0,031 W/m K,

classification du matériau B1 (difficilement inflammable)

Eléments raccordés

Armature B 500 (selon NBN-EN 1992)

Béton Classe de résistance du béton de l'ouvrage extérieur:

au moins C25/30 et en fonction de la classe d'exposition selon NBN-EN 1992.

Classe de résistance du béton de l'ouvrage intérieur:

au moins C20/25 et en fonction de la classe d'exposition selon NBN-EN 1992.

¹⁾ Neopor® est une marque déposée de BASF

Exemples de calepinage des éléments

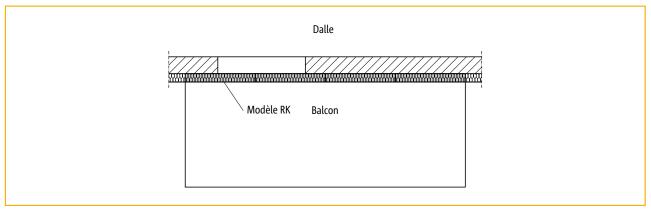


Illustration 1: balcon en porte-à-faux avec modèle RK lors de la rénovation d'un balcon existant

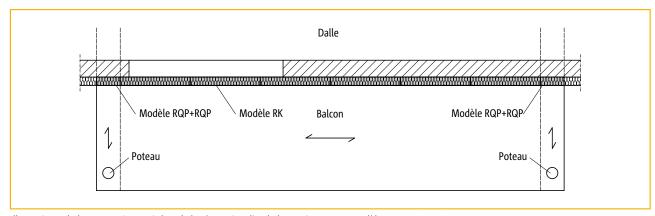


Illustration 2: balcon sur trois appuis lors de la rénovation d'un balcon existant avec modèles RK et RQP+RQP

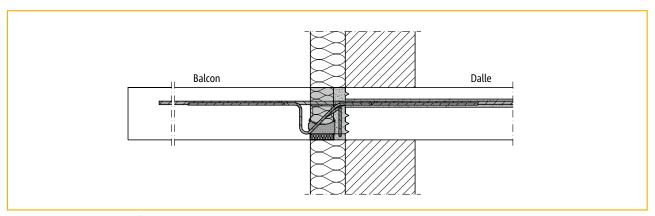


Illustration 3: balcon en porte-à-faux avec appui direct lors de la rénovation d'un balcon existant

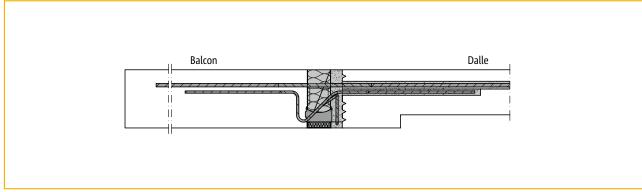
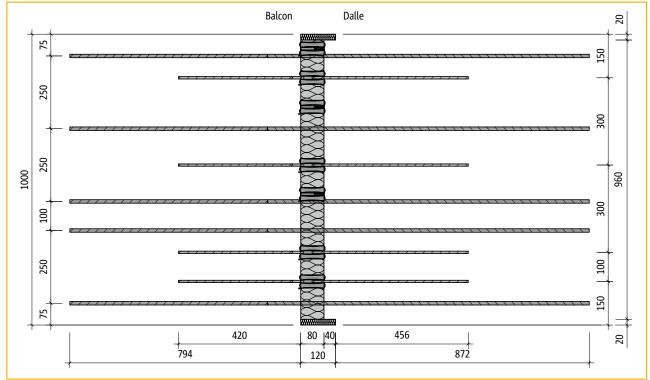
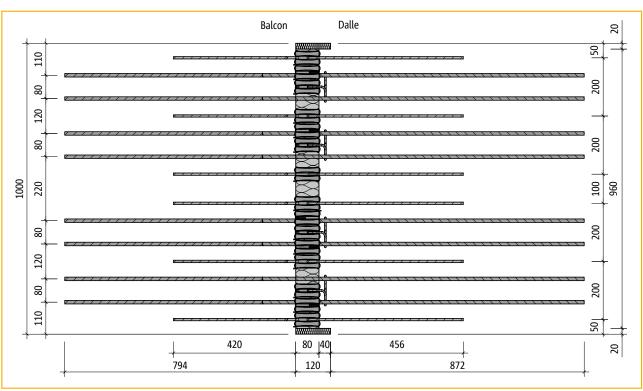
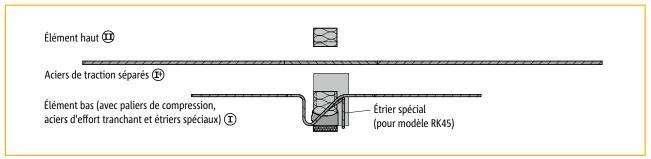
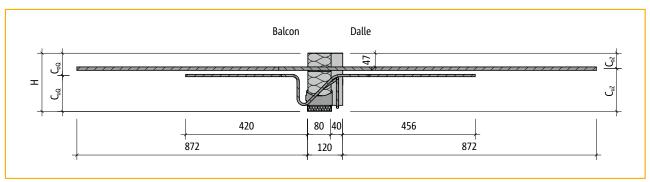




Illustration 4: balcon en porte-à-faux avec appui indirect lors de la rénovation d'un balcon existant

Description du produit



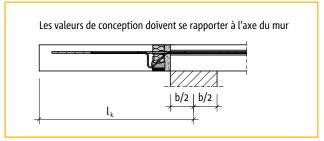
Vue en plan Schöck Isokorb® modèle RK25

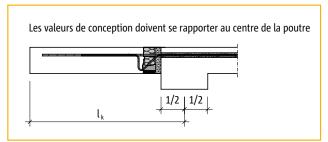


Plan Schöck Isokorb® modèle RK45

Description du produit

Structure Schöck Isokorb® modèles RK25 et RK45




Coupe Schöck Isokorb® modèles RK25 et RK45

Schöck Isokorb® modèle			RK25					RK45			
Hauteur Isokorb® H [mm]			200	220	240	250	180	200	220	240	250
	Longueur Isokorb® [m]	1,00				1,00					
	Aciers de traction (l _{v,dalle} in mm)	5 ø 12 (872)					8 ø 12 (872)				
	Aciers d'effort tranchant	4 ø 8 (456)					6 ø 8 (456)				
	(l _{v,dalle} in mm)										
Description	Palier de compression [pce]	7				15					
du produit	Étrier spécial	-					4				
	C _{oZ} [mm]	53	53	53	53	53	53	53	53	53	53
	C _{uz} [mm]	127	147	167	187	197	127	147	167	187	197
	C _{oQ} [mm]	56,5	76,5	96,5	116,5	126,5	56,5	76,5	96,5	116,5	126,5
	C _{uQ} [mm]	123,5	123,5	123,5	123,5	123,5	123,5	123,5	123,5	123,5	123,5

C_{OZ} Entraxe des aciers de traction du bord supérieur de l'Isokorb®
 C_{UZ} Entraxe des aciers de traction du bord inférieur de l'Isokorb® (bord de la dalle)
 C_{OQ} Entraxe des aciers d'effort tranchant du bord supérieur de l'Isokorb®
 C_{UQ} Entraxe des aciers d'effort tranchant du bord inférieur de l'Isokorb® (bord de la dalle)

Table de calcul / remarques

Appui direct: l, pour calcul

Appui indirect: l_k pour calcul

S	chöck Isokorb® modèle	RK25	RK45			
Valeurs de	Résistance du béton	≥ C20/25				
conception pour	Surface de la face frontale de la dalle	rugueux	rugueux			
		m _{Rd} [kN	Nm/m]			
	180	-21,4	-34,0			
	200	-26,2	-41,7			
	220	-31,1	-49,3			
	240	-35,9	-57,0			
	250	-38,3	-60,8			
 Hauteur		ν _{Rd} [kN/m]				
Isokorb®	180 - 250	+49,8	+74,6			
H [mm]		Facteur de déform	nabilité tan $lpha$ [%]			
	180	1,0				
	200	0,8				
	220	0,7				
	240 - 250	0,	6			
		Distance max. entre des j	oints de dilatations e [m]			
	180 - 250	11,3	11,3			

Les remarques concernant la conception de la structure, pages 20 - 23, doivent être prises en compte.

Capacité d'effort tranchant de la platine

Le calcul de la capacité d'effort tranchant de la platine doit être effectué par le Bureau d'études auteur de la structure selon SIA 262, section 4.3.3.

Distances aux bords

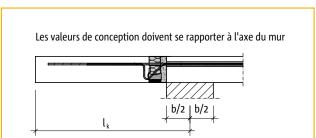
Pour le Schöck Isokorb® modèle RQP et RQP+RQP, les entraxes suivants doivent être respectés pour chaque composant en ce qui concerne les bords libres et les joints de dilatation à l'état monté:

Aciers de traction et éléments de compressions: $\geq 50 \text{ mm}$ Aciers d'effort tranchant: $\geq 100 \text{ mm}$ $\leq 150 \text{ mm}$

Déformation / Contre-flèche / Rapport portée / Hauteur utile

Les facteurs de déformabilité (tan α [%]) indiqués dans ce tableau et résultant uniquement de la déformation du Schöck Isokorb® à l'état limite de l'aptitude au service (pour des combinaisons d'influences quasi stables $g = 2/3 \cdot p$, $q = 1/3 \cdot p$, $\psi_2 = 0,3$). Ils servent pour l'évaluation de la contre-flèche nécessaire. La contre-flèche du coffrage de la dalle du balcon s'obtient, par le calcul, à partir du calcul selon SIA 262 concernant la déformation due au Schöck Isokorb®. La contre-flèche du coffrage de la dalle du balcon devant être indiquée par le bureau d'étude structure/le constructeur dans le plan d'exécution (base: déformation totale calculée à partir de la dalle en porte-à-faux + l'angle de rotation de la dalle + Schöck Isokorb®) doit être arrondie de façon à ce que la direction d'évacuation de l'eau définie soit respectée (arrondi vers le haut: en cas d'évacuation de l'eau vers la façade du bâtiment, arrondi vers le bas: en cas d'évacuation de l'eau vers l'extrémité du porte-à-faux).

Déformation (ü) due à Schöck Isokorb®


$$\ddot{u} = \tan \alpha \cdot l_k \cdot (m_{\ddot{u}d} / m_{Rd}) \cdot 10 \text{ [mm]}$$

tan α = Facteur de déformabilité [%] (voir table de calcul, page 45)

l, = Longueur du porte à faux [m]

m_{ud} = Moment fléchissant [kNm/m] dépendant du dimensionnement pour la détermination de la déformation ü [mm] due au Schöck Isokorb®. La combinaison d'actions préparées pour cela a été déterminée par le spécialiste de l'analyse des forces de précontraintes.

m_{Rd} = Moment de calcul maximal [kNm/m] du Schöck Isokorb® modèle K (voir page 44).

Remarque

Les facteurs de déformabilité indiqués page 44 servent uniquement d'approximation pour l'évaluation de la déformation du Schöck Isokorb®. En fonction de la situation de la mise en œuvre et du montage, d'autres composantes de déformation à prendre en compte peuvent apparaître.

Exemple

Donné: balcon de la page 45

Sélectionné: Schöck Isokorb® modèle RK25-H200

 $m_{Rd} = -26.2 \text{ kNm/m}$ (voir tableau page 44) $v_{Rd} = +49.8 \text{ kN/m}$ (voir tableau page 44) $tan \alpha = 0.8 \%$ (voir tableau page 44) Combinaison des actions choisies pour contre-flèche: q + q/2

n_{üd} calculé à l'état limite ultime

 $q_{ud} = -[(\gamma_G \cdot g + \gamma_Q \cdot q/2) \cdot l_k^2/2 + \gamma_G \cdot g_R \cdot l_k]$

 $m_{iid} = -[(1,35 \cdot 6,5 + 1,5 \cdot 3,0/2) \cdot 1,5^2/2 + 1,35 \cdot 1,0 \cdot 1,5]$

= -14,4 kNm/m

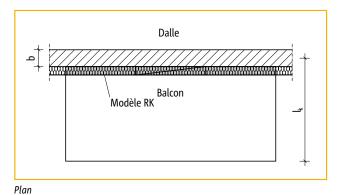
 $\ddot{u} = [\tan \alpha \cdot l_k \cdot (m_{iid}/m_{Rd})] \cdot 10 [mm]$

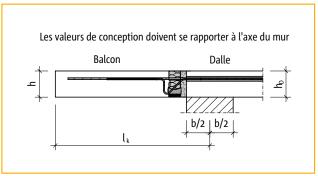
 $\ddot{u} = [0.8 \cdot 1.5 \cdot (14.4/26.2)] \cdot 10$

ü = 7 mm

Rapport portée / Hauteur utile

Afin de garantir l'aptitude au service, nous conseillons la limitation du rapport portée / hauteur utile via le porte-à-faux maximal suivant max l, [m]:


Enrobage béton	l _k max [m] pour hauteur d'Isokorb® H [mm]							
des aciers de traction	180	200	220	240	250			
C _v = 47 mm	1,85	2,14	2,44	2,73	2,83			


RK

Conception de la structure

Schöck Isokorb® modèle RK

Exemple de calcul

Coupe

 $l_{k} = 1,50 \text{ m}$

 $h = 200 \, \text{mm}$

 $q = 6.5 \text{ kN/m}^2$ $q = 4.0 \text{ kN/m}^2$

 $g_R = 1.0 \text{ kN/m}$

Planifié: balcon en porte à faux avec modèle RK

Dimensions: Longueur du porte à faux

(l, est sur l'axe du mur)

épaisseur de la dalle de balcon

Hypothèses de charges: Dalle de balcon et revêtement

Charge utile Charge à l'extrémité

Classe d'exposition: Extérieur XC4

Qualité minimale

du béton: Extérieur C25/30

Sélectionné: Qualité du béton C25/30 pour balcon

Enrobage béton pour Isokorb® modèle RK

aciers de traction $c_{..} = 47 \text{mm}$

Sollicitations:

$$\begin{split} & M_{_{Ed}} = -\left[(\gamma_{_{G}} \cdot g + \gamma_{_{Q}} \cdot q) \cdot l_{_{k}}^{\,\,2}/2 + \gamma_{_{G}} \cdot g_{_{R}} \cdot l_{_{k}} \right] \\ & M_{_{Ed}} = -\left[(1,35 \cdot 6,5 + 1,5 \cdot 4,0) \cdot 1,5^{2}/2 + 1,35 \cdot 1,0 \cdot 1,5 \right] \end{split}$$

 $M_{Ed} = -18,6 \text{ kNm/m}$

 $\begin{aligned} V_{Ed} &= + (\gamma_G \cdot g + \gamma_q \cdot q) \cdot l_k + \gamma_G \cdot g_R \\ V_{Ed} &= + (1,35 \cdot 6,5 + 1,5 \cdot 4,0) \cdot 1,5 + 1,35 \cdot 1,0 \end{aligned}$

 $V_{Ed} = +21,3 \text{ kN/m}$

Existant: dalle de balcon en béton armé

Dimensions: Épaisseur de la dalle de balcon $h_{D} = 200 \text{ mm}$

Armature: Armature de traction présente dans le sens

> du porte-à-faux R378 Diamètre des barres longitudinales porteur du TS 8,5 mm

Enrobage béton de l'armature de traction

supérieure dans le sens du porte-à-faux $c_{y} = 30 \text{ mm}$

Qualité minimale

du béton: Intérieur C20/25

Existant: Qualité de béton B35/25 de la dalle existante

Exemple de calcul / Remarques

Note de calcul modèle Schöck Isokorb®

Sélectionné: Schöck Isokorb® modèle RK25-H200

```
M_{Ed} = -18,6 \text{ kNm/m} \ge M_{Rd} = -26,2 \text{ kNm/m} \sqrt{ }  (M_{Rd} voir tableau page 44)

V_{Ed} = +21,3 \text{ kN/m} \le V_{Rd} = +49,8 \text{ kN/m} \sqrt{ }  (V_{Rd} voir tableau page 44)
```

Note de calcul de la dalle existante pour la charge présente

Section nécessaire de l'armature dans la dalle existante pour la continuité des efforts de traction du moment fléchissant (calcl k_d):

```
\begin{array}{lll} d_{dalle} &= 200 - 30 - 10/2 = 165 \text{ mm } (16,5 \text{ cm}) \\ M_{Ed} &= -18,6 \\ b &= 1,0 \text{ m} \\ \\ b &= 1000 \text{ mm} \\ \# \rlap/010-150 &\longrightarrow A_s = 1,0 \cdot 524 = 524 \text{ mm}^2 \\ x_u &= 435 \cdot 524 \ / \ (0,75 \cdot 1000 \cdot 13,3) = 22,9 \\ z &= 165 - 7/18 \cdot 22,9 = 156 \text{ mm} \\ M_{Rd} &= -156 \cdot 435 \cdot 524 = -35,56 \cdot 10^6 \text{ Nmm} = -35,56 \text{ kNm} \leq -22,9 \text{ kNm} \end{array}
```

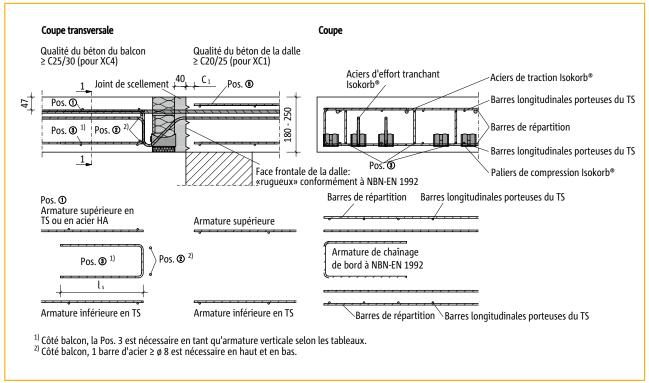
Si a néc.> a exist., réduire la charge et / ou le porte-à-faux l, jusqu'a ce que a néc. ≤ a exist.

En règle générale, la section de l'armature de traction existante dans le sens du porte-à-faux dans la dalle est $\leq \emptyset$ 12 mm, ce qui permet de garantir la longueur de recouvrement via la longueur des aciers de traction de l'Isokorb®. (Exemple: R378 \emptyset 8,5 \leq aciers de traction RK \emptyset 12)

La longueur de l'ancrage existant $l_v = 872$ mm des aciers de traction du modèle RK nécessite, sur la base des longueurs d'ancrage et de recouvrement maximales selon NBN-EN 1992 et un enrobage béton $c_1 = 30$ mm au niveau de la face frontale de la dalle ainsi qu'un écart entre les barres des aciers de traction maximal de 8 d_v .

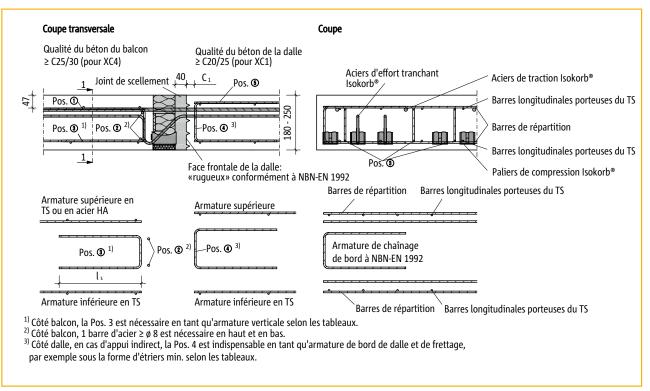
```
l_v = l_s + c_1 + 4d_s

l_v = 794 \text{ mm} + 30 \text{ mm} + 4 \cdot 12 \text{ mm}
```


En cas de dépassement des distances des aciers de traction de 8 d_s, la longueur de recouvrement de l'armature de la dalle et de l'Isokorb® selon NBN-EN 1992 doit être vérifiée.

Avec l'Isokorb®, la dalle existante ne peut pas être renforcée.

Tenir compte des conflits entre les barres l'Isokorb® et l'armature de dalle existante lors de la conception.


Armature structurale

Appui direct

Armature chantier en cas d'appui direct du bord de la dalle

Appui indirect

Armature structurale en cas d'appui indirect du bord de la dalle

Armature structurale

Schöck Isokorb® modèle		RK25	RK45				
Résistano	e du béton ≥ C25/30	Côté balcon					
		Pos. 1 Armature de re	ecouvrement [cm²/m]				
	180 - 250	5,65	9,05				
		Pos. 2 Barre d'acier					
	180 - 250	2 (ø 8				
Hauteur Isokorb®		Pos. ③ Armature	verticale [cm²/m]				
H [mm]	180		2,40				
	200		2,59				
	220	1,14	2,74				
	240		2,87				
	250		2,92				
Résistano	e du béton ≥ C20/25	Côté dalle					
		Pos. ⑤ Armature de recouvrement nécessaire [cm²/m]					
	180 - 250		ureau d'étude indispensable) d'étude, exemple de calcul page 46)				
		Pos. ④ ³⁾ Armature verticale nécessaire avec appui indirect [cm²/m]					
Hauteur Isokorb®	180		2,40				
H [mm]	200		2,59				
	220	1,0	2,74				
	240		2,87				
	250		2,92				

Pos. ①: Armature de recouvrement pour Schöck Isokorb® pour une sollicitation de 100 % du moment de calcul maximal avec C25/30, démarche purement constructive: a¸ armature de recouvrement ≥ a¸ aciers de tractions Isokorb®. Pour déterminer la longueur de recouvrement, les réglementations selon la norme NBN-EN 1992 s'appliquent. Une réduction de la longueur de recouvrement nécessaire est admise avec a¸ néc./a¸ exist.. Pour le recouvrement (l,) avec le Schöck Isokorb®, une longueur des aciers de traction de 764 mm est tolérée avec les modèles RK25 et RK45.

Liste de contrôle

Ш	Le dimensionnement des sollicitations sur le Schöck Isokorb® a-t-il été déterminé?
	Le porte-à-faux du système a-t-il été utilisé pour cela?
	La qualité du béton de la dalle a-t-elle été analysée et sert-elle de base du calcul?
	Les distances maximales entre les joints de dilatation ont-elles été respectées?
	Les distances aux bords et les entraxes ont-ils été respectés?
	Les recommandations concernant les limitations du rapport portée / hauteur utile ont-elles été respectées?
	La direction d'évacuation de l'eau a-t-elle été prise en compte dans les instructions concernant la contre-flèche?
	L'état limite de la résistance de la dalle a-t-elle été vérifiée pour V _{Rd}
	L'armature de raccordement indispensable dans la dalle existante est-elle présente?
	Les composants du système à utiliser avec le Schöck Isokorb® R ont-ils été consignés dans le plan d'exécution? Mortier d'injection Hilti HIT-RE 500 Béton de scellement (par ex. Cugla®), voir également le chapitre Exécution des travaux (page 79 ff).
	Les exigences concernant les plans d'exécution des agréments Zulassung Z-15.7-297 et Z-15.7-298 du Schöck Isokorb® ont-elles été respectées? (voir page 20).

Schöck Isokorb® modèle KST destiné à la rénovation

Schöck Isokorb® modèle KST

Le Schöck Isokorb® modèle KST est un élément porteur et isolant pour le raccordement de poutres métalliques à des constructions en acier. Il est composé d'un module KST-KST pour la transmission des efforts de traction et d'un module KST-QST pour la transmission d'efforts tranchants et d'efforts horizontaux. Le nombre et la disposition dans la construction dépendent de la dimension du profilé et des sections.

KST

Schöck Isokorb® modèle KST destiné à la rénovation

Matériaux / Protection anticorrosion

Matériaux Schöck Isokorb® modèle KST

Acier inoxydable N° de matériau: 1.4401, 1.4404 et 1.4571

Tige filetée S 460

Profilé rectangulaire S 355

Plaque de compression (module QST) S 275

Platine de distance (module ZST) S 235

Isolation Polystyrène expansé (Neopor^{®1}), $\lambda = 0.031 \text{ W/m} \cdot \text{K}$

Protection anticorrosion

L'acier inoxydable utilisé sur le Schöck Isokorb® modèle KST correspond au numéro de matériau: 1.4401, 1.4404 ou 1.4571. Ces aciers sont, selon l'agrément technique Zulassung Z-30.3-6, annexe 1 «des ouvrages et des éléments de raccordements en aciers inoxydables» de la classe de résistance III/classification moyenne.

Corrosion de contact

Le raccordement du Schöck Isokorb® modèle KST à une platine frontale galvanisée et enduite d'une protection anticorrosion est sans risque du point de vue de la résistance à la corrosion de contact (voir homologation Z-30.3-6, section 2.1.6.4). Pour les raccordements Schöck Isokorb® modèle KST, la surface du métal non précieux (platine frontale en acier) est plus importante que celle de l'acier inoxydable (tiges, rondelles), de façon à éviter toute défaillance du raccordement suite à une corrosion de contact.

¹⁾ Neopor® est une marque déposée de BASF

Schöck Isokorb® modèle KST destiné à la rénovation

Exemples de calepinage des éléments

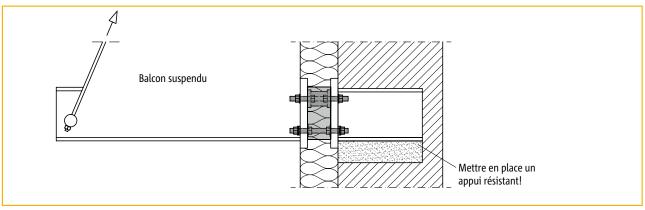


Illustration 1: balcon suspendu, raccordé avec un module KST-QST et un module KST-ZST (balcon en charpente métallique)

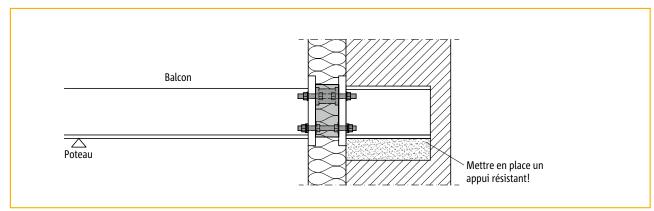


Illustration 2: balcon soutenu, raccordé avec un module KST-QST et un module KST-ZST (balcon en charpente métallique)

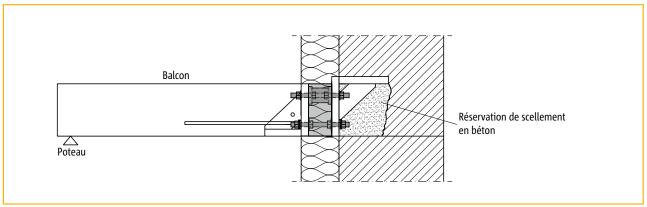


Illustration 3: balcon soutenu, raccordé avec un module QST et un module ZST (béton frais)

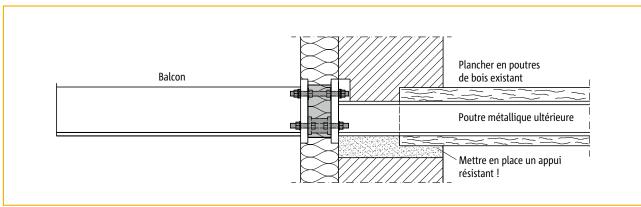


Illustration 4: balcon en porte-à-faux, raccordé à un plancher en poutres de bois avec modèle KST (balcon en acier)

Schöck Isokorb® modèle KST destiné à la rénovation

Exemples de calepinage des éléments

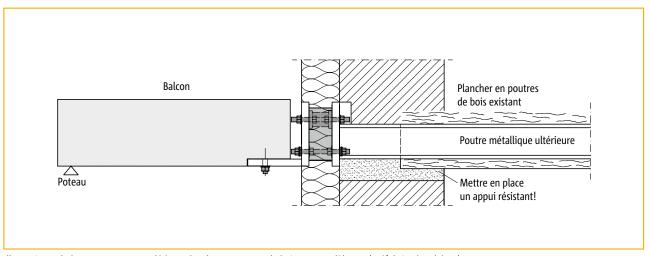
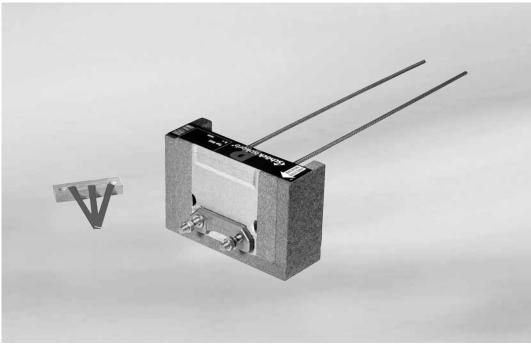



Illustration 5: balcon soutenu, raccordé à un plancher en poutres de bois avec modèle KST (préfabriqué en béton)

Vous trouverez des informations concernant les dimensions et le calcul du module Schöck Isokorb® KST au chapitre Acier/Aciers dans les Informations Techniques du Schöck Isokorb®. Les ingénieurs du service technique seront heureux de répondre à vos questions concernant les aspects struturels et constructifs, et de physique du bâtiment et vous proposeront des solutions avec calculs et plans détaillés (voir données de contact page 2).

Schöck Isokorb® modèle RQS

Le Schöck Isokorb® modèle RQS est un élément porteur et isolant pour le raccordement de balcons en acier soutenus à des dalles en béton armé existantes. Il transmet les efforts tranchants positifs et les efforts horizontaux.

Homologations / Exigences / Matériaux / Protection anticorrosion

Homologations / exigences

Schöck Isokorb® modèle RQS: Zulassung Z-15.7-298

Mortier d'injection Hilti HIT-RE 500: Zulassung Z-21.8-1790 en ETA-08/0105

Matériaux Schöck Isokorb®

Armature B 500 (selon NBN-EN 1992)

Paliers de compression dans le mortier de scellement S 235 JRG1, S355 JO

Acier inoxydable N° matériau: 1.4401, 1.4404, 1.4362, 1.4462 et 1.4571, S 460 selon

homologation n°: Z-30.3-6

Ouvrage et attaches en acier inoxydable et BSt 500 NR

Plaque de compression dans la zone extérieure N° matériau: 1.4404, 1.4362 et 1.4571 ou de qualité supérieure,

par ex. 1.4462

Cales N° matériau: 1.4401 S 235, épaisseur 2 mm et 3 mm

Isolation Polystyrène expansé (Neopor^{®1)}), $\lambda = 0.031 \text{ W/m} \cdot \text{K}$,

Classification du matériau B1 (difficilement inflammable)

Eléments raccordés

Armature B 500 (selon NBN-EN 1992)

Béton normal côté dalle, classe de résistance minimale du béton C20/25

et en fonction de la classe d'exposition selon NBN-EN 1992

Armature Au moins S 235 côté balcon; classe de résistance, justificatif statique

et protection anticorrosion selon spécialiste de l'analyse des forces

de précontraintes

Protection anticorrosion

- L'acier inoxydable utilisé sur le Schöck Isokorb® modèle RQS correspond au numéro de matériau: 1.4362, 1.4401, 1.4404 ou 1.4571. Ces aciers sont, selon l'agrément technique Zulassung Z-30.3-6, annexe 1 «des ouvrages et des éléments de raccordements en aciers inoxydable» de la classe de résistance III/classification moyenne.
- Le raccordement du Schöck Isokorb® modèle RQS associé à une platine frontale galvanisée et enduite d'une protection anticorrosion est sans risque du point de vue de la résistance à la corrosion de contact (voir homologation Z-30.3-6, section 2.1.6.4). Pour les raccordements Schöck Isokorb® modèle RQS, la surface du métal non précieux (platine frontale en acier) est plus importante que celle de l'acier inoxydable (tiges, rondelles et tasseaux), de façon à éviter toute défaillance du raccordement suite à une corrosion de contact.

¹⁾ Neopor® est une marque déposée de BASF

Exemples de calepinage des éléments

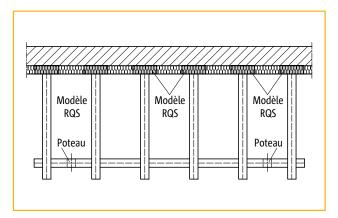


Illustration 1: rénovation d'un balcon existant avec modèle RQS, construction soutenue

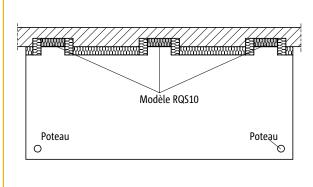


Illustration 2: montage d'un balcon sur une dalle existante avec modèle RQS, construction soutenue

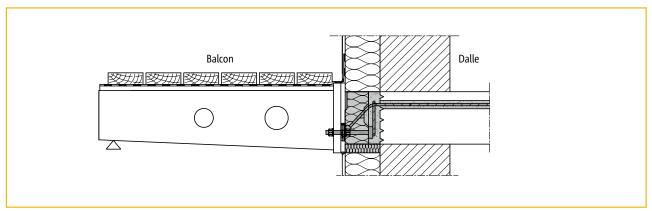


Illustration 3: balcon sur poteaux pour la rénovation d'un balcon existant

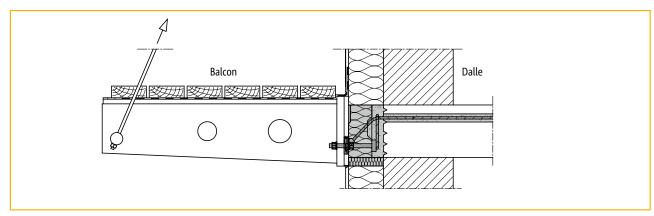
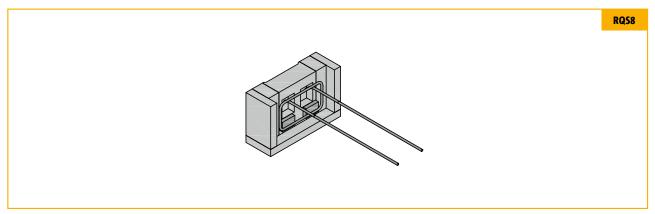
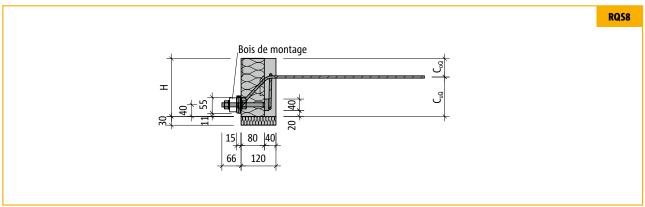
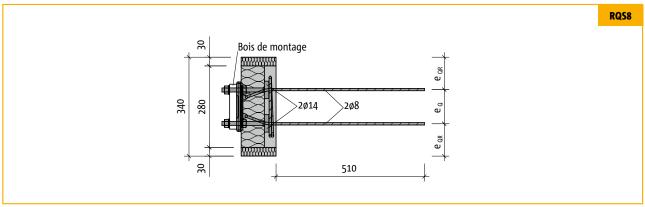
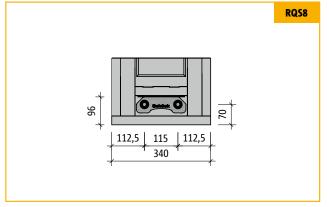
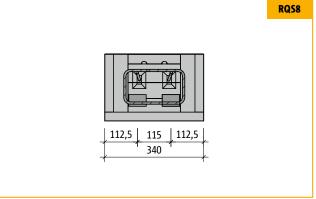




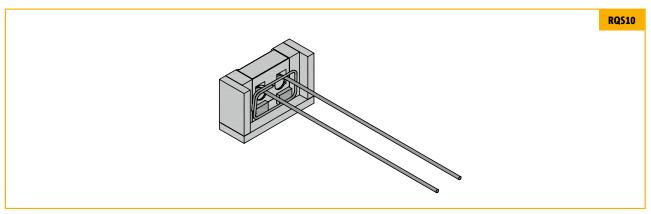
Illustration 4: balcon suspendu pour la rénovation d'un balcon existant


Description du produit

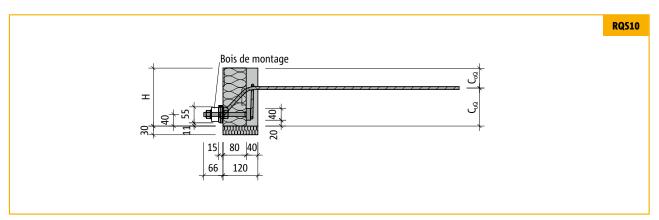

Isométrie: Schöck Isokorb® modèle RQS8


Coupe: Schöck Isokorb® modèle RQS8

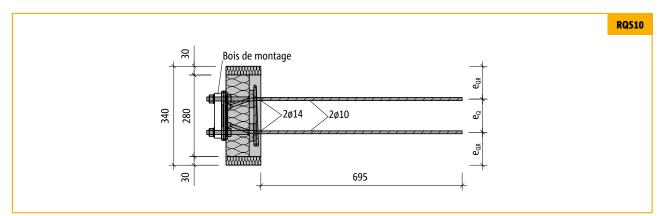
Plan: Schöck Isokorb® modèle RQS8

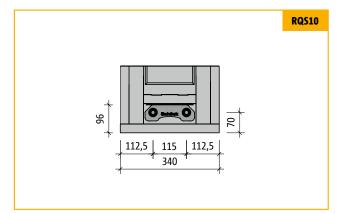


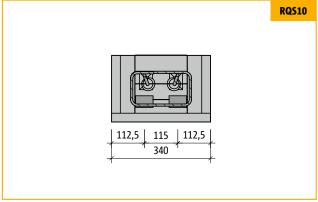
Vue latérale extérieure: Schöck Isokorb® modèle RQS8



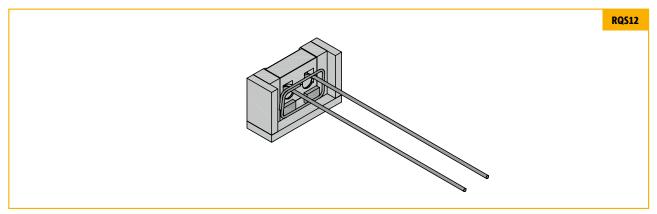
Vue latérale intérieure: Schöck Isokorb® modèle RQS8


Description du produit

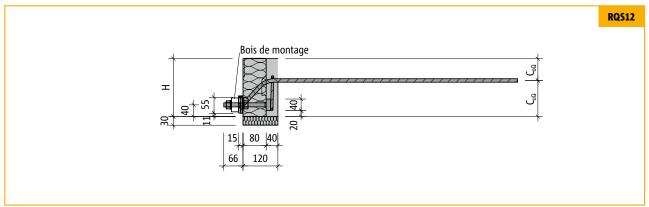

Isométrie: Schöck Isokorb® modèle RQS10


Coupe: Schöck Isokorb® modèle RQS10

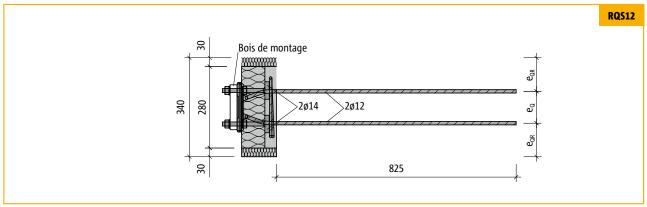
Plan: Schöck Isokorb® modèle RQS10

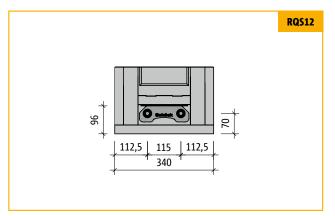


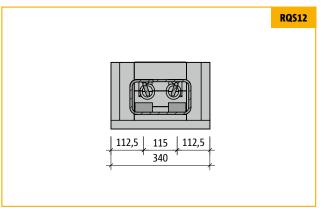
Vue latérale extérieure: Schöck Isokorb® modèle RQS10



Vue latérale intérieure: Schöck Isokorb® modèle RQS10


Description du produit

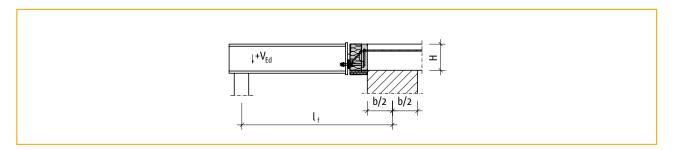

Isométrie: Schöck Isokorb® modèle RQS12


Coupe: Schöck Isokorb® modèle RQS12

Plan: Schöck Isokorb® modèle RQS12

Vue latérale extérieure: Schöck Isokorb® modèle RQS12

Vue latérale intérieure: Schöck Isokorb® modèle RQS12


Description du produit

Schöck Isokorb® modèle			RQS8				RQS10			RQS12		
Hauteur Isokorb® H [mm]		160	180	200	220	160	180	200	220	180	200	220
	Longueur Isokorb® [mm]	340			340			340				
	Aciers d'effort tranchant	2 ø 8 (510)			2 ø 10 (695)			2 ø 12 (825)				
	(l _{v,dalle} in mm)											
Description	Paliers de compression	2 ø 14				2 ø 14				2 ø 14		
du produit	C _{oQ} [mm]	44	44	64	84	50	50	50	70	56	56	76
	C _{uQ} [mm]	116	116	116	116	110	130	150	150	124	144	144
	e _Q [mm]	104	118	118	118	100	114	127	127	109	123	123
	e _{QR} [mm]	118	111	111	111	120	113	106,5	106,5	115,5	108,5	108,5

C_{QQ} Entraxe des aciers d'effort tranchant du bord supérieur de l'Isokorb® Entraxe des aciers d'effort tranchant du bord inférieur de l'Isokorb® (bord de la dalle) e_Q Entraxe des aciers d'effort tranchant entre eux e_{QR} Entraxe des aciers d'effort tranchant du bord extérieur de l'Isokorb®

Table de calcul

Les valeurs de conception doivent se rapporter à l'axe du mur.

Sc	höck Isokorb® modèle	RQS8	RQS10	RQS12			
Valeurs de	Résistance du béton	≥ C20/25					
conception pour	Surface de la face frontale de la dalle	rugueux	cranté	cranté			
			Effort tranchant V _{Rd} [kN]				
	160	120.0	+48,3	-			
	180/200/220	+28,0	†40,3	+69,6			
		Effort horizontal H _{Rd} [kN] ¹⁾					
Hauteur Isokorb®	160 - 220	±2,5	±2,5	±2,5			
H [mm]		Distance max. entre des joints de dilatations e [m]					
	160	5,1	2,0	-			
	180			3,1			
	200	5,8	5,8	ГО			
	220			5,8			

Pour l'absorption des efforts horizontaux (H_{Ed}) parallèles au mur extérieur, un effort tranchant d'au moins 2,9 · H_{Ed} doit être garantit.

Remarques

Dimensionnement

- Les remarques concernant la conception de la structure, pages 20 23, doivent être prises en compte.
- Les retours droits des aciers d'effort tranchant dans la zone de traction doivent affleurer avec l'armature de traction des plaques mitoyennes.

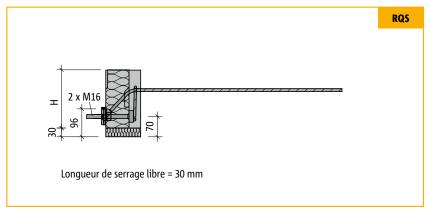
Distance entre les joints de dilatation

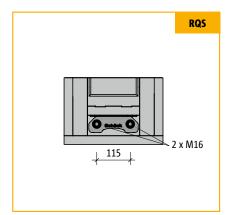
La détermination de la distance entre joints admise se fait à partir de la poutre métallique de la dalle de balcon en béton armé solidement raccordée. Si des mesures constructives pour le glissement entre la dalle du balcon et chaque poutre métallique sont prises, alors seules les distances des raccordements inamovibles façonnés prévalent.

Distance au bord et des éléments

La distance de l'axe de l'ouvrage des Schöck Isokorb® modèles RKS et RQS au bord de l'ouvrage doit être d'au moins 190 mm; la distance entre chaque axe ne doit pas dépasser 340 mm.

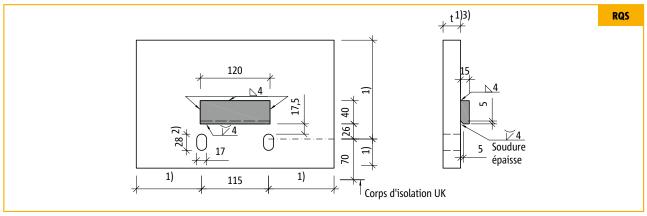
Tolérance de montage


Seules des écarts verticaux peuvent être compensés par construction par les Schöck Isokorb® modèles RKS/RQS lors du montage ultérieur des poutres métalliques. La tolérance est de: +10 mm à la verticale et ±0 mm à l'horizontale. C'est pourquoi les Isokorb® modèles RKS/RQS doivent être posés selon des dimensions précises.


Cette précision doit être indiquée à la société chargée de la fabrication des raccordements de dalle rapportés dans le plan d'exécution. Pour un raccordement fonctionnel de la charpente métallique et du gros œuvre ne nécessitant aucunes finissions ni ajustements, le maître d'œuvre doit vérifier que les tolérances sont respectées et prises en compte dans la construction métallique.

Astuce:

Une fois le nouveau balcon terminé (charpente métallique ou préfabriqué), ne commencer que lorsque les Schöck Isokorb® modèle R ont été mis en place et que leur position définitive a été déterminée grâce à un relevé des cotes précis (mm).

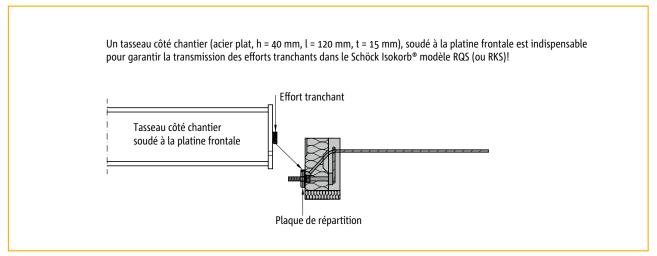

Charpente métallique / Platine frontale structurale

Coupe: Schöck Isokorb® modèle RQS

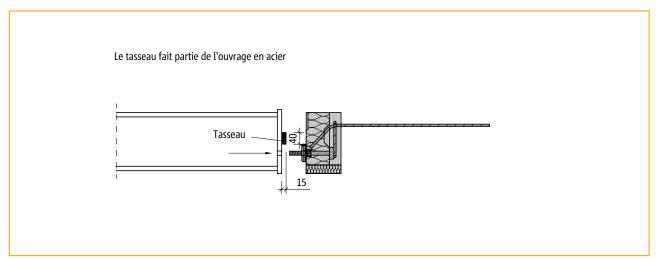
Vue de face: Schöck Isokorb® modèle RQS

Platine frontale chantier pour Schöck Isokorb® modèle RQS

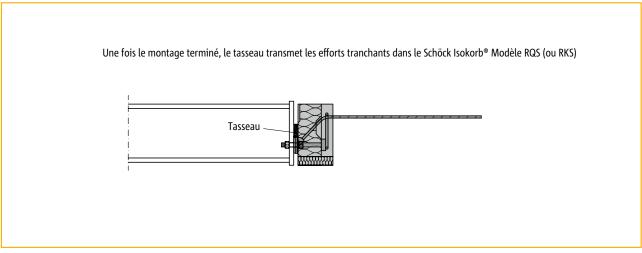
Remarque


- Le tasseau est nécessaire pour la transmission des efforts tranchants! Voir page 65.
- > Type d'acier en fonction des besoins statiques. Appliquer un produit de protection anticorrosion après soudage.
- Charpente métallique: les tolérances du gros-œuvre doivent impérativement être vérifiées!

 $^{^{\}mbox{\tiny 1)}}$ Selon instructions du spécialiste de l'analyse des forces de précontraintes


²⁾ La taille du trou correspond à un ajustement vertical de +10mm. L'augmentation de la taille du trou permet d'augmenter l'ajustement vertical.

³⁾ Respecter la longueur de serrage libre: 30 mm pour RQS8, RQS10 et RQS12.


Charpente métallique / Tasseau structural

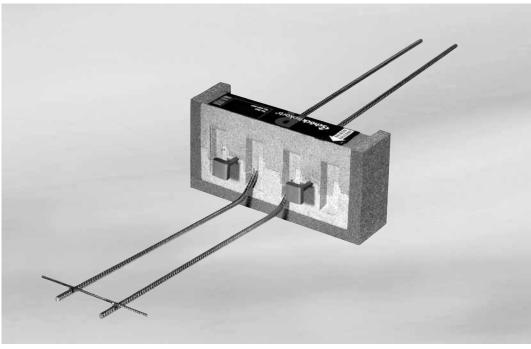
Tasseau nécessaire sur la platine frontale

Montage de la poutre métallique sur le Schöck Isokorb®

Le tasseau repose maintenant sur la plaque de répartition. Glisser des cales (fournies à la livraison) sous le tasseau pour le rattrapage des niveaux

otion de la structure

RQS


Schöck Isokorb® modèle RQS

Liste de contrôle

Le modèle de Schöck Isokorb® choisi est-il adapté au système structurel? Le modèle RQS sert de raccordement de cisaillement (articulation)
Le dimensionnement des sollicitations sur le Schöck Isokorb® a-t-il été déterminé?
La portée système a-t-elle été utilisée pour cela?
La qualité du béton de la dalle a-t-elle été analysée et sert-elle de base du calcul?
Les distances maximales entre les joints de dilatation ont-elles été respectées?
Les distances aux bords et entre les éléments ont-elles été respectées?
L'armature de raccordement indispensable dans la dalle existante est-elle présente?
La longueur totale et la hauteur totale du corps d'isolation pour les plans de coffrage ont-elles été respectées?
Les tasseaux bilatéraux indispensables ont-ils été suffisamment mis en évidence dans le plan d'exécution (page 65)?
Les couples de serrage des vis de raccordement ont-ils été consignés dans le plan d'exécution (voir aussi page 114)? Les écrous doivent être serrés sans précontrainte définie; les couples de serrage suivants doivent être appliqués: RQS8 (tige Ø 16): M _r = 50 Nm RQS10 (tige Ø 16): M _r = 50 Nm RQS12 (tige Ø 16): M _r = 50 Nm
Les composants du système à utiliser avec le Schöck Isokorb® R ont-ils été consignés dans le plan d'exécution? Mortier d'injection Hilti HIT-RE 500 Béton de scellement (par ex. Cugla®), voir également le chapitre Exécution des travaux (page 79 ff).
Les exigences concernant les plans d'exécution des agréments Zulassung Z-15.7-297 et Z-15.7-298 du Schöck Isokorb® ont-elles été respectées? (voir page 20).

Schöck Isokorb® modèles RQP, RQP+RQP

Schöck Isokorb® modèle RQP

Le Schöck Isokorb® modèle RQP est un élément porteur et isolant pour le raccordement de balcons en béton armé soutenus à des dalles en béton armé existantes. Il transmets les efforts tranchants positifs.

Le Schöck Isokorb® modèle RQP+RQP transmet les efforts tranchants positifs et négatifs.

Conception de la structure

RQP

Schöck Isokorb® modèles RQP, RQP+RQP

Homologations / Exigences / Matériaux

Homologations / Exigences

Schöck Isokorb® modèles RQP et RQP+RQP: Zulassung Z-15.7-297

Mortier d'injection Hilti HIT-RE 500: Zulassung Z-21.8-1790 en ETA-08/0105

Matériaux Schöck Isokorb®

Armature B 500 (selon NBN-EN 1992)

Armature S 235 JRG1

Acier inoxydable Armature de haute adhérence (HA) BSt 500 NR, n° matériau 1.4362 ou 1.4571

Aciers de traction n° matériau 1.4362 (f_{vk} = 700 N/mm²)

Barre d'acier lisse, n° matériau 1.4571 ou 1.4404 de niveau de consolidation S 460

Paliers de compression Acier inoxydable (voir ci-dessus)

Isolation Polystyrène expansé (Neopor®)¹¹, λ = 0,031 W/m K,

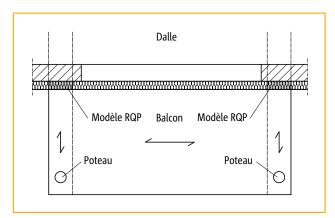
classification du matériau B1 (difficilement inflammable)

Eléments raccordés

Armature B 500 (selon NBN-EN 1992)

Béton Classe de résistance du béton de l'ouvrage extérieur:

au moins C25/30 et en fonction de la classe d'exposition selon NBN-EN 1992.


Classe de résistance du béton de l'ouvrage intérieur:

au moins C20/25 et en fonction de la classe d'exposition selon NBN-EN 1992.

¹⁾ Neopor® est une marque déposée de BASF

Schöck Isokorb® modèles RQP, RQP+RQP

Exemples de calepinage des éléments et de coupes

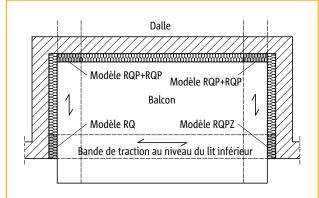


Illustration 1: balcon sur poteaux

Illustration 2: loggia et efforts ascendants

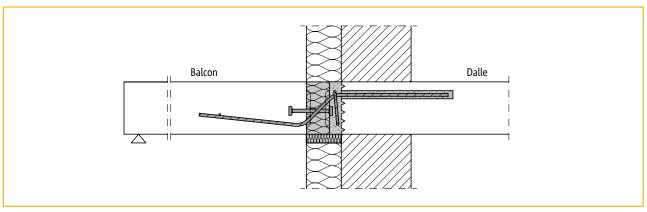


Illustration 3: maçonnerie avec isolation extérieure sur poteaux et modèle RQP

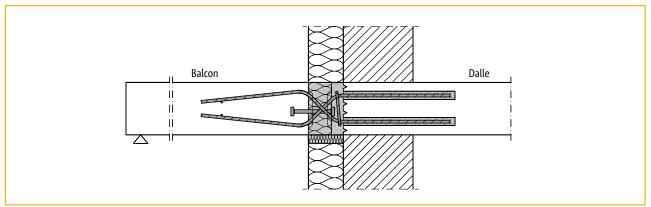


Illustration 4: maçonnerie avec isolation extérieure sur poteaux et modèle RQP+RQP

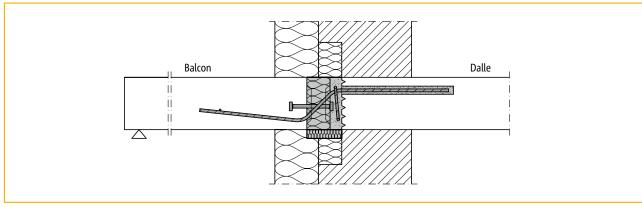
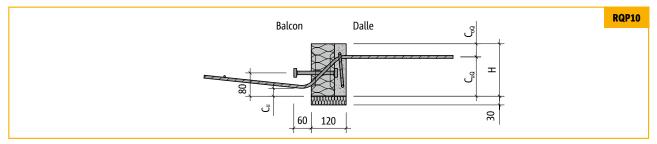
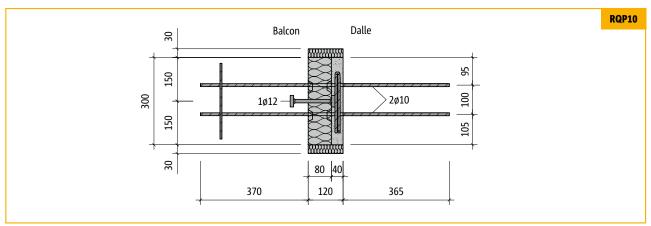
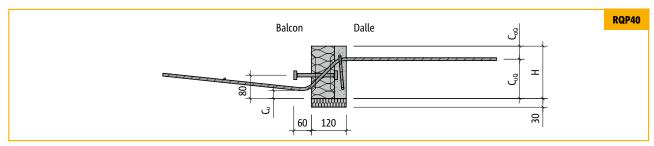
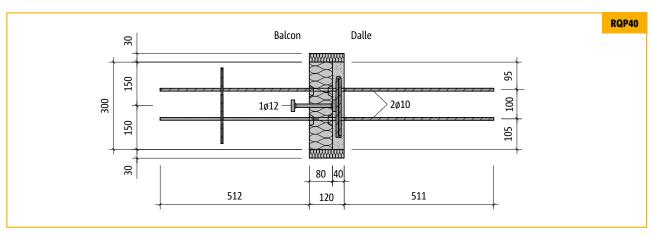



Illustration 5: maçonnerie avec isolation extérieure sur poteaux et modèle RQP

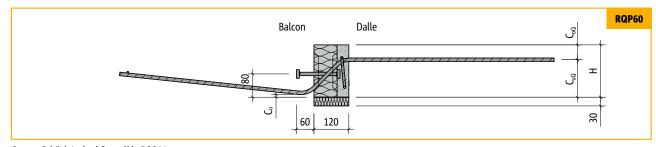

RQP

Schöck Isokorb® modèle RQP

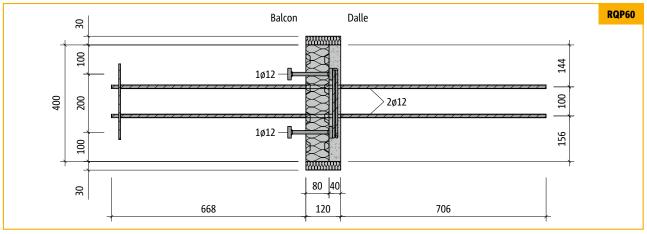

Description du produit


Coupe: Schöck Isokorb® modèle RQP10

Plan: Schöck Isokorb® modèle RQP10

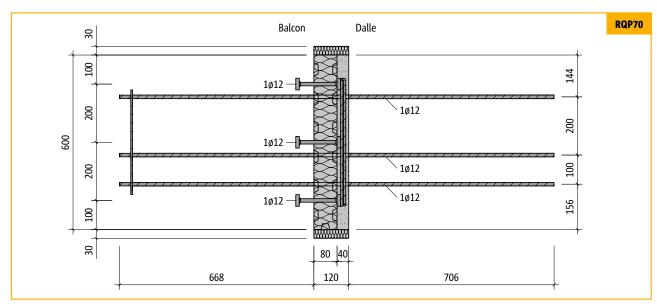


Coupe: Schöck Isokorb® modèle RQP40

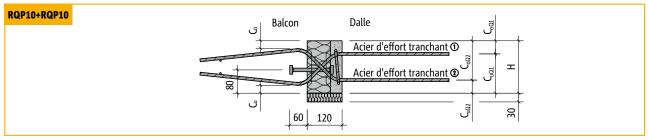


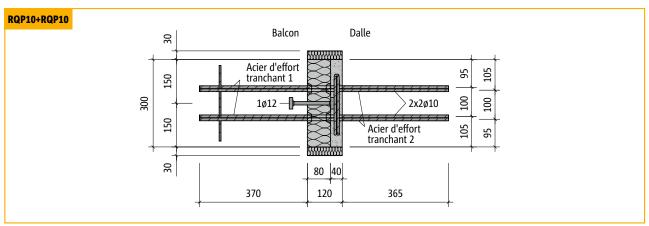
Plan: Schöck Isokorb® modèle RQP40


Description du produit

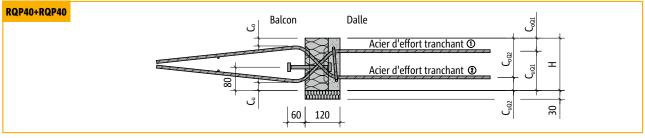

Coupe: Schöck Isokorb® modèle RQP60

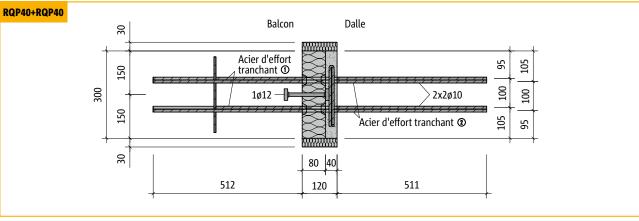
Plan: Schöck Isokorb® modèle RQP60


Coupe: Schöck Isokorb® modèle RQP70

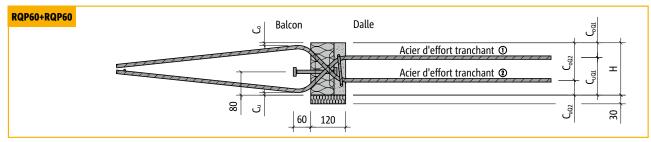

Plan: Schöck Isokorb® modèle RQP70

Schöck Isokorb® modèle RQP+RQP

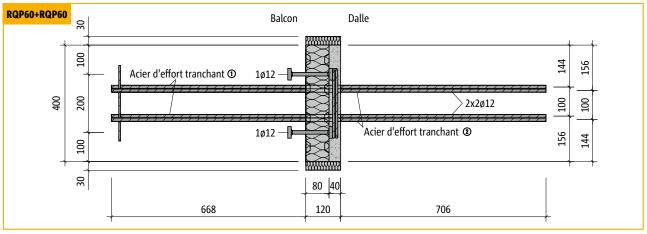

Description du produit


Coupe: Schöck Isokorb® modèle RQP10+RQP10

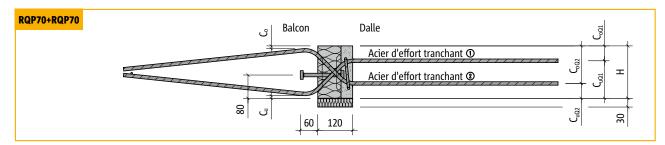
Plan: Schöck Isokorb® modèle RQP10+RQP10

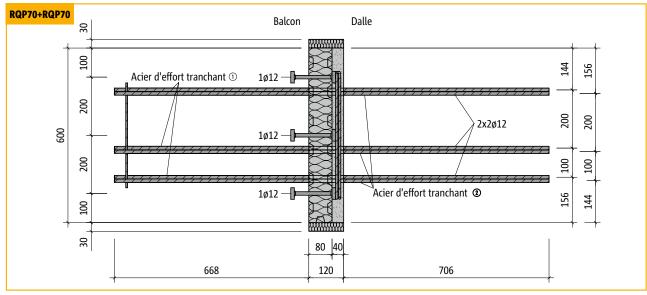


Coupe: Schöck Isokorb® modèle RQP40+RQP40



Plan: Schöck Isokorb® modèle RQP40+RQP40


Description du produit


Coupe: Schöck Isokorb® modèle RQP60+RQP60

Plan: Schöck Isokorb® modèle RQP60+RQP60

Coupe: Schöck Isokorb® modèle RQP70+RQP70

Plan: Schöck Isokorb® modèle RQP70+RQP70

Description du produit

Schöck Isokorb® modèle			RQP10		RQP40		RQP60		RQP70		
Hauteur Isokorb® H [mm]		160	180	200	160	180	200	180	200	180	200
	Longueur Isokorb® [mm]	360		360		460		660			
	Aciers d'effort tranchant	2 ø 10 (365)		2 ø 10 (511)		2 ø 12 (706)		3 ø 12 (706)			
Description	(l _{v,dalle} in mm)										
Description du produit	Paliers de compression		1 ø 12			1 ø 12		2 ø	12	3 ø	12
du produit	C _u [mm]	10	27	27	10	27	27	10	10	10	10
	C _{oQ} [mm]	45	45	65	45	45	65	51	71	51	71
	C _{uQ} [mm]	115	135	135	115	135	135	129	129	129	129

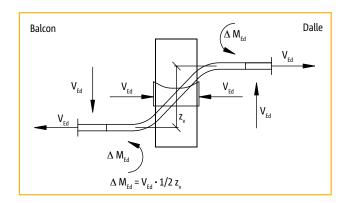
Schöck Isokorb® modèle		RG	P10+RQP	10	RQP40RQP40		RQP60+RQP60		RQP70RQP70		
Haut	Hauteur Isokorb® H [mm]		180	200	160	180	200	180	200	180	200
	Longueur Isokorb® [mm]		360		360		460		660		
	Aciers d'effort tranchant	2	2 ø 10 (365)		2 ø 10 (511)		2 ø 12 (706)		3 ø 12 (706)		
	(l _{v,dalle} in mm)										
	Paliers de compression		1 ø 12		1 ø 12		2 ø 12		3 ø	12	
Description	C _u [mm]	10	27	27	10	27	27	10	10	10	10
du produit	C _o [mm]	10	27	47	10	27	47	10	30	10	30
	C _{oQ1} [mm]	45	45	65	45	45	65	51	71	51	71
	C _{uQ1} [mm]	115	135	135	115	135	135	129	129	129	129
	C _{uQ2} [mm]	45	45	45	45	45	45	51	51	51	51
	C _{oQ2} [mm]	115	135	155	115	135	155	129	149	129	149

Enrobage béton inférieur côté balcon des aciers d'effort tranchant Enrobage béton supérieur côté balcon des aciers d'effort tranchant Entraxe des aciers d'effort tranchant du bord supérieur de l'Isokorb® Entraxe des aciers d'effort tranchant du bord inférieur de l'Isokorb® (bord de la dalle)

Tables de calcul / Remarques

Sc	Schöck Isokorb® modèle		RQP40	RQP60	RQP70			
Valeurs de	Résistance du béton	≥ C20/25						
conception pour	Surface de la face frontale de la dalle	rugueux	rugueux	rugueux	rugueux			
		Effort tranchant V _{Rd} [kN]						
	160	.20.2	. 27. 0	-	-			
	180/200	+26,3	+37,8	+59,1	+88,6			
Hauteur Isokorb®		ΔM _{Ed} [kNm]						
H [mm]	160/180/200	1,3	1,9	3,2	5,0			
		Distance max. entre des joints de dilatations e [m]						
	160	9,4	9,4	_	_			
	180/200	10,4	10,4	8,5	8,5			

Sc	Schöck Isokorb® modèle		RQP40+RQP40	RQP60+RQP60	RQP70+RQP70			
Valeurs de	Résistance du béton	≥ C20/25						
conception pour	Surface de la face frontale de la dalle	rugueux	rugueux	rugueux	rugueux			
		Effort tranchant V _{Rd} [kN]						
	160	±26,3	127.0	_	_			
	180/200	±20,5	±37,8	±59,1	±88,6			
Hauteur Isokorb®		ΔM _{Ed} [kNm]						
H [mm]	160/180/200	1,3	1,9	3,2	5,0			
		Distance max. entre des joints de dilatations e [m]						
	160	9,4	9,4	_	_			
	180/200	10,4	10,4	8,5	8,5			


Les remarques concernant la conception de la structure, pages 20 - 23, doivent être prises en compte.

Capacité d'effort tranchant de la platine

Le calcul de la capacité d'effort tranchant de la platine doit être effectué par le Bureau d'études auteur de la structure selon NBN-EN 1992-1-1: 6.2.

Moments dus aux fixations non symétriques [△M_{Ed}]

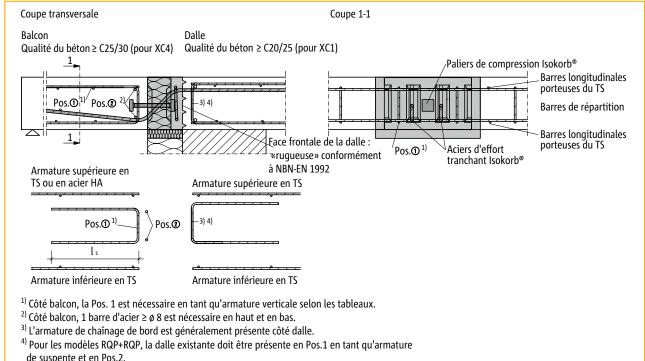
Pour déterminer l'armature de recouvrement des deux côtés des Schöck Isokorb® RQP et RQP+RQP, les moments dus aux fixations non symétriques supplémentaires doivent être pris en compte. Ces moments doivent toujours aux moments des contraintes définies lorsqu'ils ont le même signe.

Remarques

Dimensionnement

Un justificatif statique doit être fourni pour les dalles de raccordement présentes sur les deux côté du Schöck Isokorb®. Pour déterminer l'armature des dalles du plancher et du balcon qui seront raccordées au Schöck Isokorb® modèle RQP, un appui simple doit être utilisé, car seuls des efforts tranchants peuvent être transmis par le Schöck Isokorb® modèle RQP. Les aciers d'effort tranchants doivent affleurer avec l'armature de traction dans la zone de traction des dalles à raccorder.

Distances aux bords


Pour le Schöck Isokorb® modèle RQP et RQP+RQP, les entraxes suivants doivent être respectés pour chaque composant Isokorb® en ce qui concerne les bords libres et les joints de dilatation à l'état monté:

Élément de compression: ≥ 50 mm Aciers d'effort tranchant: ≥ 100mm

≤ 150 mm

Armature structurale

Raccordement avec étriers

de suspente et en Pos.2.

		Schöck Isokorb® modèle						
Armature structurale	RQP10 RQP10+RQP10	RQP40 RQP40+RQP40	RQP60 RQP60+RQP60	RQP70 RQP70+RQP70				
Pos. (1) Armature verticale [cm²/Isokorb®]	0,61	0,87	1,36	2,04				
Pos. (2) Barre d'acier	2 ø 8							

Conception de la structure

RQP

Schöck Isokorb® modèles RQP, RQP+RQP

Liste de contrôle

Le modèle de Schöck Isokorb® choisi est-il adapté au système structurel? Les modèles RQP et RQP+RQP servent de raccordement de cisaillement (articulation)
Le dimensionnement des sollicitations sur le Schöck Isokorb® a-t-il été déterminé?
La portée système a-t-elle été utilisée pour cela?
La qualité du béton de la dalle a-t-elle été analysée et sert-elle de base du calcul?
Les distances maximales entre les joints de dilatation ont-elles été respectées?
Les distances aux bords et les entraxes ont-ils été respectés?
L'état limite de la résistance de la dalle a-t-elle été vérifiée pour $V_{\scriptscriptstyle Rd}$
L'armature de raccordement indispensable dans la dalle existante est-elle présente?
La longueur totale et la hauteur totale du corps d'isolation pour les plans de coffrage ont-elles été respectées?
Les composants du système à utiliser avec le Schöck Isokorb® R ont-ils été consignés dans le plan d'exécution? Mortier d'injection Hilti HIT-RE 500
Béton de scellement (par ex. Cugla®), voir également le chapitre Exécution des travaux (page 79 ff).
Les exigences concernant les plans d'exécution des agréments Zulassung Z-15.7-297 et Z-15.7-298 du Schöck Isokorb® ont-elles été respectées? (voir page 20).

78

Physique du bâtiment

Bases de planification

Conception de la structure

Exécution des travaux

Schöck Isokorb® R

Processus de mise en œuvre sur le chantier

Le montage du Schöck Isokorb® modèle R doit être effectué en étroite collaboration avec l'architecte et le bureau d'études en charge de la structure et conformément aux instructions de montage de Schöck Isokorb® R (pages 83 - 128). Vous trouverez ci-dessous les grandes étapes qui constituent le processus de montage sur le chantier.

- Si nécessaire: retirer le balcon existant.
- Après l'avoir retiré: vérifier le lit et les distances des barres longitudinales approuvées pour la conception.
- Marquer les trous sur la face frontale de la dalle existante à l'aide du gabarit de perçage fournit dans la livraison.
- Le diamètre des trous et la profondeur de pose dépendent du modèle de Schöck Isokorb®.
- Respecter les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500»
 (d_o = diamètre de barre + 4 mm).
- Conformément à l'agrément, un dispositif d'aide au perçage doit être utilisé; la méthode de perçage admise est le perçage à percussion avec dispositif d'aide au perçage. Si un perçage touche une armature existante, celui-ci doit être immédiatement stoppé. Le forage abandonné (diamètre d₀) doit être comblé avec du mortier HIT-RE 500 et un nouveau trou peut être percé à une distance d'au moins 2d₀.
- En fonction du modèle Schöck Isokorb® R, un joint rugueux ou cranté doit être exécuté sur la face frontale de la dalle existante conformément à NBN-EN 1992. Cela signifie qu'il faut tailler des encoches en V d'une profondeur et à des distances définies sur la face frontale de la dalle existante.
- Nettoyage des trous, remplissage des trous et pose des raccordements d'armatures du modèle Schöck Isokorb® R conformément aux instructions de pose du Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500».
- Support du Schöck Isokorb® R pendant la période de durcissement du mortier d'injection pour empêcher toute déformation causée par le jeu des trous.
- Le corps d'isolation des Schöck Isokorb® R modèles RKS, RQS, RQP et RQP+RQP forme un coffrage perdu pour la réalisation des jointures de scellement.
- Avec le modèle RK, il est indispensable de créer un coffrage de balcon avant de réaliser les jointures de scellement.
- Combler la jointure de scellement avec du béton de scellement (par ex. Cugla®). Les instructions de préparation du fabricant doivent être respectées.
- Une fois le béton de scellement durci, la fabrication de la dalle de balcon en béton armé (modèles RK, RQP, RQP+RQP) et le raccordement de la poutre métallique peuvent commencer.

Exécution des travaux

Schöck Isokorb® R

Mortier d'injection / Béton de scellement

Système d'injection Hilti HIT-RE 500

Le collage du Schöck Isokorb® R dans la dalle existante est effectué avec le système d'injection Hilti HIT-RE 500. Les réglementations de l'Agrément technique européen ETA-08/0105 «Raccordement d'armature coulée ultérieur avec mortier d'injection Hilti HIT-RE 500» doivent être respectées.

Il est possible de déterminer l'utilité des raccordements d'armatures rapportés uniquement quand les barres ont été montées comme suit:

- Le montage doit être réalisé sur le chantier par un personnel formé et surveillé (voir ETA 08/0105, section 4.4), la formation s'effectue sur demande auprès de la société Hilti.
- Un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500» (voir Téléchargement et Service Hilti ci-dessous). Les schémas doivent être mis à disposition sur le chantier le temps des travaux et doivent être présentés sur demande au responsable de la surveillance. Comme les bons de livraisons, ils doivent être conservés au moins 5 ans après la fin des travaux par la société.
- Les instructions de pose des raccordements d'armatures avec le mortier d'injection Hilti HIT-RE 500 doivent être respectées (voir ETA-08/0105, annexe 10-19)
- Procédés de perçage admis: perçage à percussion avec dispositif d'aide au perçage.

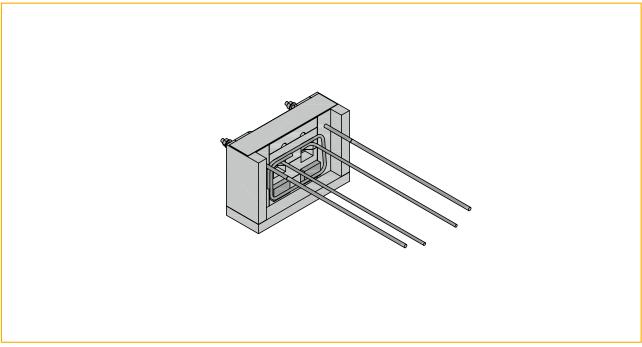
Vous pouvez obtenir des conseils et des informations sur les possibilités de formation ainsi que les documents actuels concernant le système d'injection Hilti HIT-RE 500 auprès du service clients d'Hilti:

Service / téléchargements:

Tél.0800 972 72 (appel local)Hilti Belgium S.A.Fax0800 950 18 (appel local)Z.4 Broekooi 220Email: be.customerservice@hilti.com1730 Asse

Béton de scellement

- La jointure de scellement de 4 cm de large entre la dalle existante et l'isolation du raccordement des dalles doit être comblée avec du béton de scellement.
- Il faut utiliser un béton de scellement dont les propriétés sont équivalentes a celles du béton de scellement «Cugla®» conformément a les directives du fabricant.
- Les instructions de préparation du fabricant doivent être respectées.


Demula SA¹⁾
Tél. +32 9 369 54 93
Fax. +32 9 368 20 13
contact@demula.be
www.demula.be

Demula SA Veldmeersstraat 5 B-9270 Laarne

¹⁾ En Belgique les mortiers Cuglaton® sont distribués par Demula SA

RQS

Schöck Isokorb® modèle RKS

Schöck Isokorb® modèle RKS

Tableau pour entrepreneur / Remarques concernant le montage

Schöck Isokorb® modèle	Schöck Isokorb® modèle			RKS14			
		Aciers d'effort tranchant	Aciers de traction	Aciers d'effort tranchant	Aciers de traction		
Nombre de trous forés		2	2	2	2		
Diamètre des trous forés d _o [mm]		12	14	12	18		
Profondeur de pose nécessaire l _v [mm]		510	496	287	746		
Surface de la face frontale de la dalle nécessaire		rugueux	rugueux	rugueux	rugueux		
Quantité Hilti HIT-RE 500 (selon instr de pose) [ml]	Quantité Hilti HIT-RE 500 (selon instructions de pose) [ml]		70	230			
	160	1,8					
Quantité de béton de scellement [l]	180	2,0					
pour une hauteur d'Isokorb® H [mm]	200		2,7	2			
[]	220		2,!	5			

Remarques concernant le mortier d'injection Hilti HIT-RE 500 et le béton de scellement (par ex. Cuqla®), voir page 81.

Remarques concernant le montage

Le montage du Schöck Isokorb® modèle R doit être effectué en étroite collaboration avec l'architecte et le bureau d'études en charge de la structure.

Les instructions de montage de Schöck Isokorb® modèle RKS (voir pages suivantes) doivent être respectées.

- 1. Instructions de montage sans texte (présentes sur tous les Isokorb® modèles R)
- 2. Instructions de montage avec consignes sur le montage (font partie intégrante de chaque livraison)

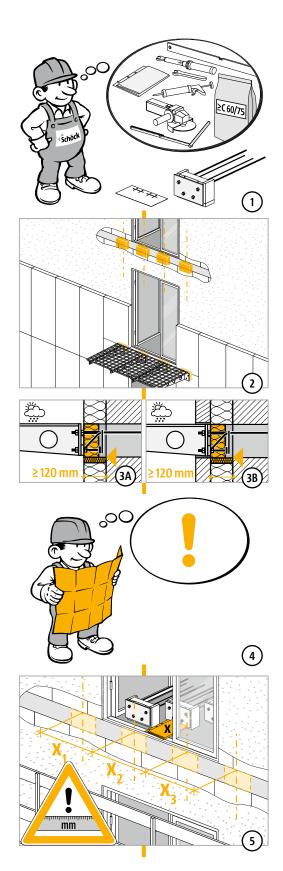
La position et les distances de l'armature existante doivent être vérifiées (si elles ne sont pas connues).

La face frontale de la dalle existante doit être façonnée dans la zone de raccordement du Schöck Isokorb® R en tant que joint rugueux ou cranté (selon le modèle Isokorb®).

L'exécution des raccordements d'armature avec barres avec mortier selon ETA-08/0105 liées avec le Schöck Isokorb® R ne peut être réalisée que par des ouvriers formées par Hilti.

Respecter les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500». (procédés de perçage admis: perçage à percussion avec dispositif d'aide au perçage.)

Utiliser le gabarit de perçage correspondant au Schöck Isokorb® R.

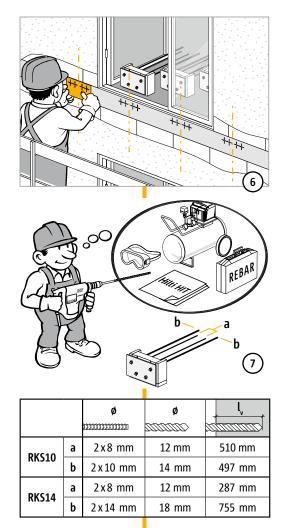

En cas de perçage sur une armature existante, stopper le perçage immédiatement. Le trou erroné (diamètre du trou d_0) doit être comblé avec l'HIT-RE 500 et un nouveau trou doit être percé à une distance d'au moins $2d_0$.

Lors du colmatage de la jointure de scellement avec du béton de scellement, les directives correspondantes du fabricant concernant le traitement du béton de scellement doivent être respectées.

Important:

Seuls des écarts verticaux peuvent être compensés par construction par le Schöck Isokorb® modèle RKS lors du montage ultérieur des éléments en acier. La tolérance est de: +10 mm à la verticale et ±0 mm à l'horizontale. C'est pourquoi l'Isokorb® modèle RKS doit être posé selon des dimensions précises.

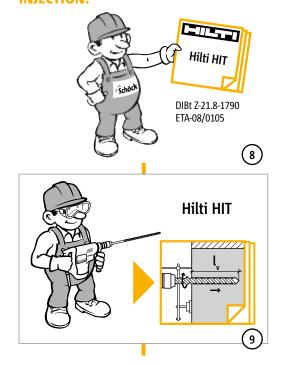
Recommandations de mise en oeuvre

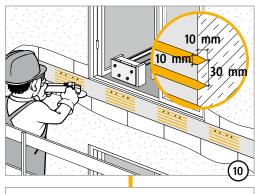


Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur. Les plans doivent être disponibles sur le chantier.

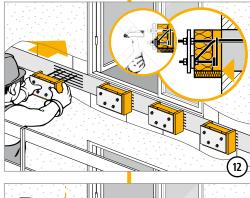
Le personnel impliqué dans la fabrication des liaisons rapportées de la dalle du balcon doit avoir été formé à l'utilisation du système d'injection Hilti HIT-RE 500. La formation peut être effectuée sur demande auprès de la société Hilti. Pour chaque raccordement d'armature, un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500».

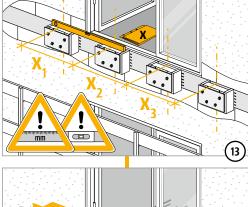
- Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
- Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®.
- ① + ② Les éléments suivants sont nécessaires pour le montage de l'Isokorb:
- Schöck Isokorb® modèle RKS
- Instructions de montage Schöck
- Gabarit de perçage pour Schöck Isokorb®
- ▶ Plans du projet, composants inclus
- Béton de scellement (par ex. Cugla®)
- Système d'injection Hilti HIT-RE 500 pour les raccordements d'armatures
- ► Homologation Hilti HIT-RE 500 ETA-08/0105
- Meuleuse d'angle pour rendre rugueuse la face frontale de la dalle
- Produit d'étanchéité pour l'étanchéification du cadre de scellement
- Outils pour le montage
- ③ Remarques concernant le montage du Schöck Isokorb®: Le Schöck Isokorb® doit être posé avec une isolation ≥ 80 mm et une jointure de scellement de 40 mm pour une largeur totale ≥ 120 mm. S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.
- 4 Les points suivants doivent apparaître sur le plan d'exécution:
- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres dans le mortier en fonction du modèle Isokorb® utilisé (voir ff)
- Mesures des longueurs de marquage l_m et l_v ou l_{e,ges} sur l'extension mixte Hilti HIT-RE 500 selon agrément ETA-08/0105, annexe 18.
- Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.
- ⑤ Marquage des lits de montage Avant le perçage, la position de l'armature de la dalle existante doit être connue par rapport aux trous à percer.

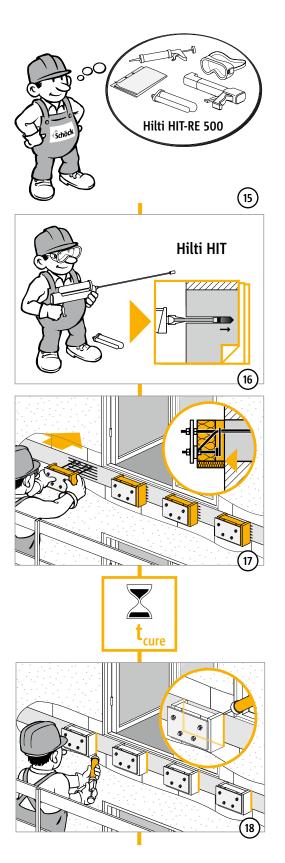

Recommandations de mise en oeuvre



- ® Marquage des perforations:
 - En utilisant le gabarit de perçage Schöck, marquer la position des trous sur la face frontale de la dalle existante conformément aux instructions du plan d'exécution.
- ① Le collage du Schöck Isokorb® sur la dalle existante doit être effectué avec le système d'injection Hilti HIT-RE 500.

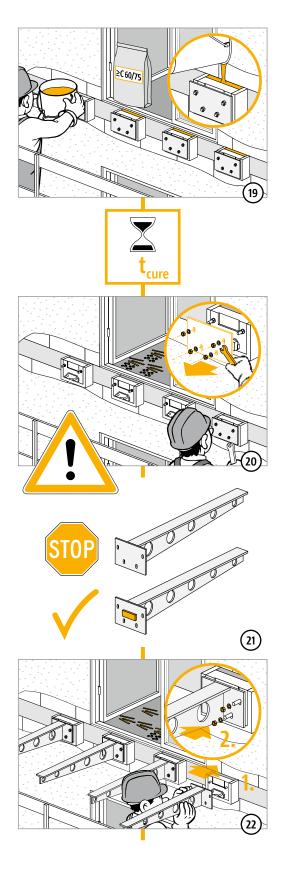

 La manipulation du système d'injection Hilti HIT-RE 500 s'effectue selon le ETA-08/0105 «Scellement d'armatures rapportées avec du mortier d'injection Hilti HIT-RE 500» et Zulassung Z-21.8-1790.
- ® Le diamètre des trous et la profondeur de pose dépendent du modèle d'Isokorb®. Veuillez respecter les valeurs du tableau. En cas de trous et d'utilisation du Hilti HIT-RE 500, l'exécutant doit être formé en conséquence.
- Le trou doit être percé à l'aide d'un dispositif de perçage à percussion avec dispositif d'aide au perçage conformément aux instructions de pose de ETA-08/105.
 - Les trous doivent être percés sans endommager l'armature. En cas de contact avec l'armature ou de forages abandonnés, prévenir immédiatement le chef de chantier responsable et, le cas échéant, le bureau d'étude auteur de la structure. Des mesures correctives adaptées doivent être prises.
 - En cas de mauvaise perforation, les trous doivent être comblés par du mortier dans les règles de l'art.


INJECTION:



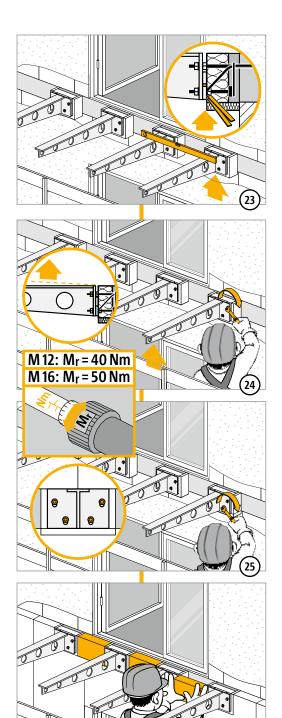
- ® Dans la zone du Schöck Isokorb®, la face frontale de la dalle existante doit être traitée conformément au croquis ci-contre et selon NBN-EN 1992.
 - La profondeur de rugosité de la surface doit être R, ≥ 1,5 mm.
- ① Conformément aux directives techniques de l'ETA-08/0105 et Zulassung Z-21.8-1790,, chaque trou foré doit être nettoyé.
- ® Après que les trous forés ont été nettoyés, le montage à sec du Schöck Isokorb® est effectué à des fins d'inspection. Le Schöck Isokorb® doit pouvoir être utilisé sans effort mécanique important.
- ® Vérifier la hauteur et l'alignement du lit ainsi que les écarts entre chaque élément du Schöck Isokorb® conformément aux instructions du plan d'exécution Les tolérances dimensionnelles maximales admissibles doivent impérativement être respectées.
- [®] Une fois que le lit du Schöck Isokorb[®] a été contrôlé, le Schöck Isokorb[®] est démonté.

Recommandations de mise en oeuvre



- ® La préparation de la pince cartouche du système d'injection Hilti HIT-RE 500 doit être effectuée conformément aux instructions techniques de ETA-08/0105.
- Le trou doit être comblé avec du mortier d'injection Hilti HIT-RE 500 sans former de bulles d'air conformément aux instructions techniques de ETA-08/0105.
- ① Étapes du montage du Schöck Isokorb®:
 - 1. Si nécessaire, monter le dispositif d'aide au montage pour la durée de durcissement du Hilti HIT-RE 500.
 - 2. Combler les trous, (à chaque fois pour un seul élément Isokorb®).
 - 3. Le Schöck Isokorb® doit ensuite être placé immédiatement dans le trou.

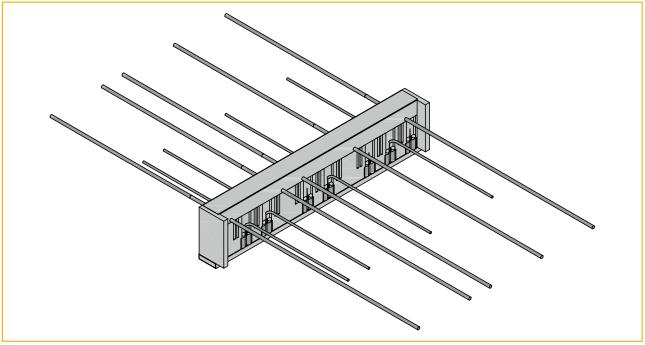
S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.


(®) Une fois le temps de durcissement «t_{cure}» atteint selon les instructions techniques de ETA-08/0105, le travail sur le Schöck Isokorb® peut reprendre.

Le joint de raccordement entre le Schöck Isokorb® et la façade existante doit impérativement être étanche, de façon à ce que le béton de scellement ne s'infiltre pas lors du scellement du joint.

- ® La jointure de scellement doit être comblée avec du béton de scellement (par ex. Cugla®). L'exécution doit être réalisée conformément aux instructions du fabricant. Une fois le béton de scellement durcit, le raccordement de la construction métallique du balcon peut être effectué conformément aux instructions suivantes.
- ② + ② Lors du raccordement de la construction métallique structurale au Schöck Isokorb® veuillez respecter ce qui suit:
- Démontage de la protection de transport.
- Poutre métallique avec platine frontale soudée selon les exigences statiques.
- Position et taille des trous sur la platine frontale conformément à l'agrément technique du Schöck Isokorb®.
- ▶ Un tasseau en acier plat, h = 40 mm, l = 120 mm, t = 15 mm, soudé à la platine frontale est indispensable pour garantir la transmission des efforts tranchants dans le Schöck Isokorb®!
- ② Raccorder la poutre métallique avec platine frontale sur les 4 goujons filetés du Schöck Isokorb® avec des écrous et des rondelles.

Recommandations de mise en oeuvre


- ② Ajustement précis de la hauteur de la poutre métallique entre la plaque de répartition du Schöck Isokorb® et le tasseau soudé sur la platine frontale de la poutre métallique avec les platines en acier fournies.
- ② + ③ Mettre en place la contre-flèche de la poutre métallique indispensable selon les plans.

Les écrous du Schöck Isokorb® doivent être serrés sans précontrainte définie; les couples de serrage suivants doivent être appliqués:

M12: $M_r = 40 \text{ Nm}$

M16: M_r = 50 Nm

- ® Raccordement su système WDVS de façon étanche aux éléments du Schöck Isokorb®.
 - Le système WDVS doit être raccordé de façon étanche à chacun des éléments du Schöck Isokorb®.
- ② Le joint présent entre les éléments du Schöck Isokorb® et le système WDVS adjacent doit être exécuté avec un produit d'étanchéité permanent adapté.

Schöck Isokorb® modèle RK

Tableau pour entrepreneur / remarques concernant le montage

Schöck Isokorb® modèle		RK	(25	RK45			
		Aciers d'effort tranchant	Aciers de traction	Aciers d'effort tranchant	Aciers de traction		
Nombre de trous forés		4	5	6	8		
Diamètre des trous forés d ₀ [mm]		12	16	12	16		
Profondeur de pose nécessaire l _v [mm	Profondeur de pose nécessaire l _v [mm]		872	456	872		
Surface de la face frontale de la dalle	Surface de la face frontale de la dalle nécessaire		rugueux	rugueux	rugueux		
Quantité Hilti HIT-RE 500 (selon instru pose) [ml]	uctions de	600		950			
	180		6,9)			
Quantité de béton de scellement [l]	200	7,7					
pour une hauteur d'Isokorb® H	220	8,5					
[mm]	240	9,2					
	250	9,6					

Remarques concernant le mortier d'injection Hilti HIT-RE 500 et le béton de scellement (par ex. Cugla®), voir page 81.

Remarques concernant le montage

Le montage du Schöck Isokorb® modèle R doit être effectué en étroite collaboration avec l'architecte et le bureau d'études en charge de la structure. Les instructions de montage de Schöck Isokorb® modèle RK (voir pages suivantes) doivent être respectées.

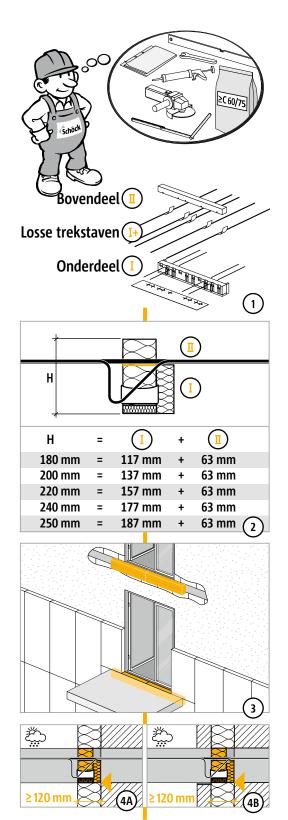
Les instructions de montage de Schöck Isokorb® modèles RK doivent être respectées:

- 1. Instructions de montage sans texte (présentes sur tous les Isokorb® modèles R)
- 2. Instructions de montage avec consignes sur le montage (font partie intégrante de chaque livraison)

La position et les distances de l'armature existante doivent être vérifiées (si elles ne sont pas connues).

La face frontale de la dalle existante doit être façonnée dans la zone de raccordement du Schöck Isokorb® R en tant que joint rugueux ou cranté (selon le modèle Isokorb®).

L'exécution des raccordements d'armature avec du mortier selon ETA-08/0105 liées avec le Schöck Isokorb® R ne peut être réalisée que par des ouvriers formées par Hilti.


Respecter les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500". (procédés de perçage admis: perçage à percussion avec dispositif d'aide au perçage.)

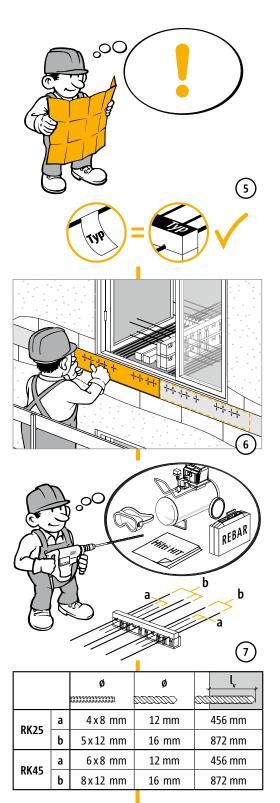
Utiliser le gabarit de perçage correspondant au Schöck Isokorb® R.

En cas de perçage sur une armature existante, stopper le perçage immédiatement. Le trou erroné (diamètre du trou d_0) doit être comblé avec l'HIT-RE 500 et un nouveau trou doit être percé à une distance d'au moins $2d_0$.

Lors du colmatage de la jointure de scellement avec du béton de scellement, les directives correspondantes du fabricant concernant le traitement du béton de scellement doivent être respectées.

Recommandations de mise en oeuvre

Le raccordement du Schöck Isokorb®- doit être conçu par un ingénieur. Le dossier de conception doit être disponible sur le chantier.

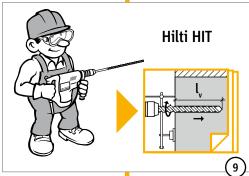

Le personnel impliqué dans la fabrication des liaisons rapportées de la dalle du balcon doit avoir été formé à l'utilisation du système d'injection Hilti HIT-RE 500. La formation peut être effectuée sur demande auprès de la société Hilti. Pour chaque raccordement d'armature, un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500".

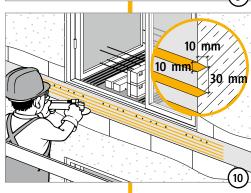
- Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
- Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®.
- ① + ② Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur. Le dossier de conception doit être disponible sur le chantier. Les éléments suivants sont nécessaires pour le montage de l'Isokorb:
- Schöck Isokorb® modèle RK
- Instructions de montage Schöck
- Gabarit de perçage pour Schöck Isokorb®
- ▶ Plans du projet, composants inclus
- Béton de scellement (par ex. Cugla®)
- Système d'injection Hilti HIT-RE 500 pour les raccordements d'armatures
- ▶ Homologation Hilti HIT-RE 500 ETA-08/0105
- Meuleuse d'angle pour rendre rugueuse la face frontale de la dalle
- Produit d'étanchéité pour l'étanchéification du cadre de scellement
- Outils pour le montage

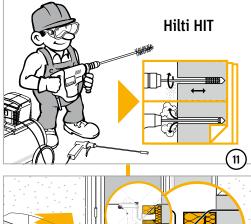
Le Schöck Isokorb® modèle RK est composé des éléments suivants:

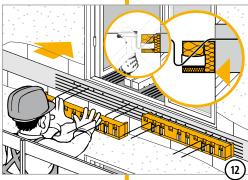
- ▶ Élément bas du Schöck Isokorb® avec aciers d'effort tranchant et paliers de compression ①
- Aciers de traction libres (1+)
- ▶ Élément haut du Schöck Isokorb® ①
 Le moyen d'identification du modèle de l'élément bas du Schöck Isokorb® ①, les aciers de traction ⊕ et l'élément haut du Schöck Isokorb® ② doivent affleurer.
- ④ Remarques concernant le montage du Schöck Isokorb®:
- Le Schöck Isokorb® doit être posé avec une isolation ≥ 80 mm et une jointure de scellement de 40 mm pour une largeur totale ≥ 120 mm.

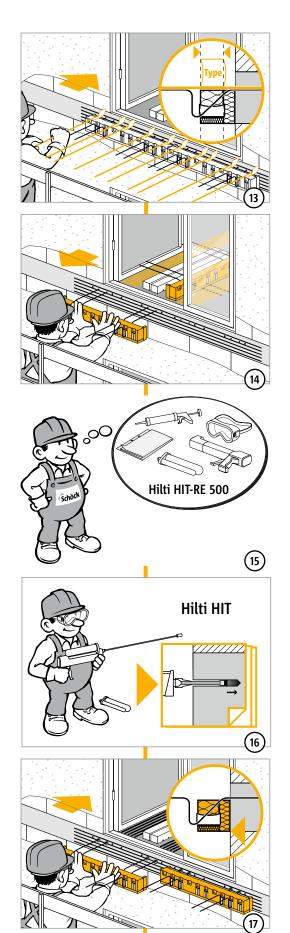
Recommandations de mise en oeuvre


- ⑤ Les points suivants doivent apparaître sur le plan d'exécution:
- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres dans le mortier en fonction du modèle Isokorb® utilisé (voir ff)
- Mesures des longueurs de marquage l_m et l_v ou l_{e, ges} sur l'extension mixte Hilti HIT-RE 500 selon agrément ETA-08/0105, annexe 18.
- ▶ Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.
 Le moyen d'identification du modèle de l'élément bas du Schöck Isokorb® ①, les aciers de traction ⊕ et l'élément haut du Schöck Isokorb® ② doivent affleurer.
- ® Marquage des lits de montage et des trous:
- En utilisant le gabarit de perçage Schöck, marquer la position des trous sur la face frontale de la dalle existante conformément aux instructions du plan d'exécution.
- Avant le perçage, la position de l'armature de la dalle existante doit être connue par rapport aux trous à percer.
- ① Le collage du Schöck Isokorb® sur la dalle existante doit être effectué avec le système d'injection Hilti HIT-RE 500. La manipulation du système d'injection Hilti HIT-RE 500 s'effectue selon le ETA-08/0105 «Scellement d'armatures rapportées avec du mortier d'injection Hilti HIT-RE 500».


Le diamètre des trous et la profondeur de pose dépendent du modèle d'Isokorb®. Veuillez respecter les valeurs du tableau.

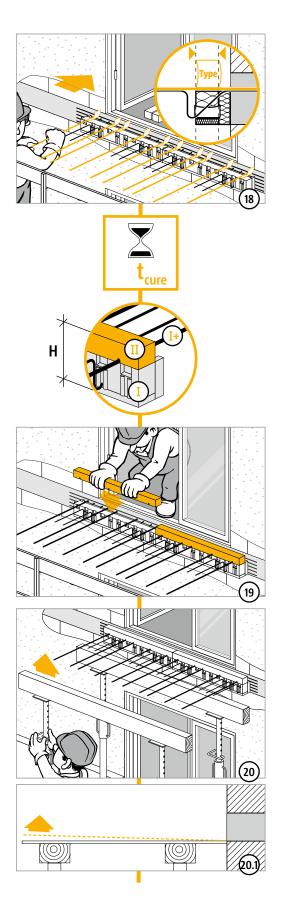

Recommandations de mise en oeuvre


INJECTION:



- ® Lors de perforations et d'utilisation du Hilti HIT-RE 500, l'exécutant doit être formé en conséquence.
- ① Le trou doit être percé à l'aide d'un dispositif de perçage à percussion avec dispositif d'aide au perçage conformément aux instructions de pose de ETA 08/0105 et selon Zulassung Z-21.8-1790. Les trous doivent être percés sans endommager l'armature. En cas de contact avec l'armature ou de forages abandonnés, prévenir immédiatement le chef de chantier responsable et, le cas échéant, le bureau d'étude auteur de la structure. Des mesures correctives adaptées doivent être prises.
 - En cas de mauvaise perforation, les trous doivent être comblés par du mortier dans les règles de l'art.
- ® Dans la zone du Schöck Isokorb®, la face frontale de la dalle existante doit être traitée conformément au croquis ci-contre et selon NBN-EN 1992.
 - La profondeur de rugosité de la surface doit être $R_t \ge 1,5$ mm.
- ① Conformément aux directives techniques de l'ETA-08/0105, chaque trou foré doit être nettoyé.
- ② Après que les trous forés ont été nettoyés, le montage à sec du Schöck Isokorb® est effectué à des fins d'inspection. Le Schöck Isokorb® doit pouvoir être utilisé sans effort mécanique important. Vérifier que la hauteur du lit de chacun des éléments du Schöck Isokorb® d'une dalle de balcon est adaptée.

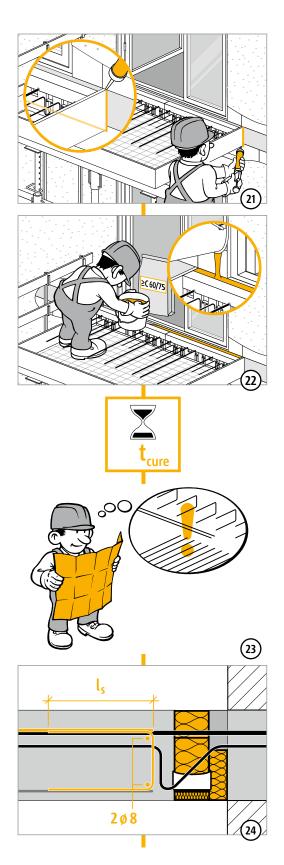
Recommandations de mise en oeuvre



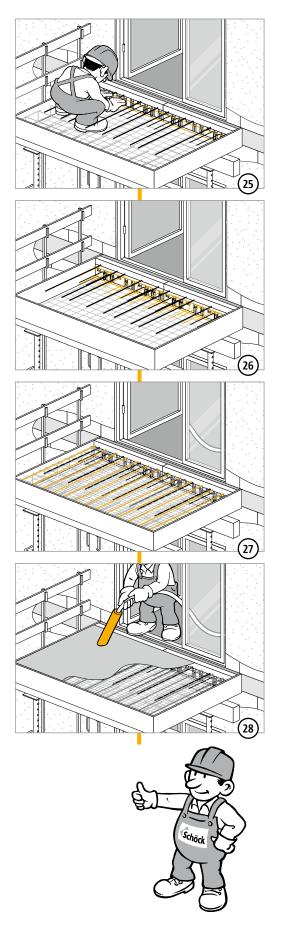
- ® Le montage des aciers de traction doit être effectué à des fins de contrôle.
 - Pour cela, les aciers de traction doivent être insérés dans le trou. Les aciers de traction sont dans une position correcte lorsque le moyen d'identification du modèle des aciers de traction, sens de la flèche vers la dalle, affleure avec l'élément bas du Schöck Isokorb®.
- [®] Une fois que le lit du Schöck Isokorb® a été contrôlé, le Schöck Isokorb® est démonté.
- ® La préparation de la pince cartouche du système d'injection doit être effectuée conformément aux instructions techniques de ETA-08/0105.
- ® Le trou doit être comblé avec du mortier d'injection Hilti HIT-RE 500 sans former de bulles d'air conformément aux instructions techniques de ETA-08/0105.
- ① + ® Étapes du montage du Schöck Isokorb®:
- ▶ 1. Si nécessaire, monter le dispositif d'aide au montage pour la durée de durcissement du Hilti HIT-RE 500.
- 2. Combler les trous de l'élément bas du Schöck Isokorb® (aciers d'effort tranchant) pour chaque mètre d'élément du Schöck Isokorb® uniquement. L'élément bas du Schöck Isokorb® doit ensuite être placé dans le trou immédiatement. S'assurer que l'élément bas du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.
- 3. Combler les trous des aciers de traction des éléments du Schöck Isokorb®. Les aciers de traction doivent ensuite être placés dans les trous immédiatement. Les aciers de traction sont dans une position correcte lorsque le moyen d'identification du modèle des aciers de traction, sens de la flèche vers la dalle, affleure avec l'élément bas du Schöck Isokorb®.

Attention: il est indispensable de changer les embouts, extension mixte comprise, après avoir comblé les trous des aciers d'effort tranchant et des aciers de traction.

Une fois le temps de durcissement «t_{cure}» atteint selon les instructions techniques de ETA-08/0105, le travail sur le Schöck Isokorb® peut reprendre.

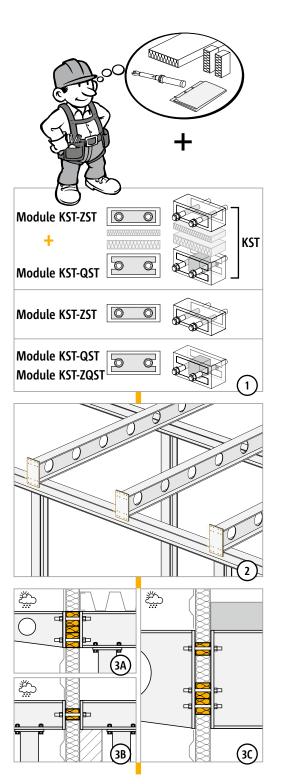

Recommandations de mise en oeuvre

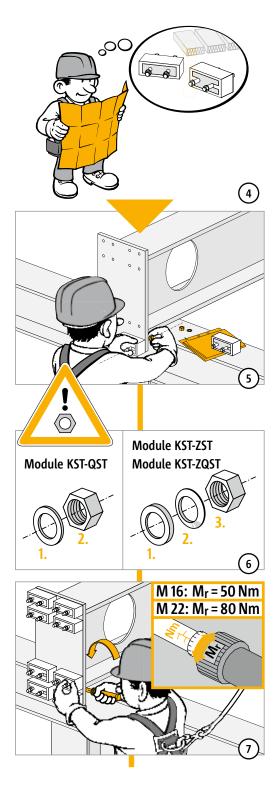
- ® Pose de l'élément haut du Schöck Isokorb® sur l'élément bas du Schöck Isokorb®.
- ② Une fois le montage des éléments du Schöck Isokorb® terminé, le coffrage du balcon et du support est construit.

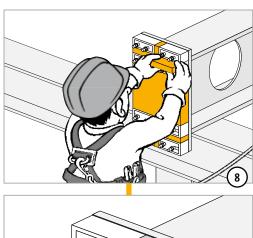

Mettre en place la contre-flèche du coffrage indispensable selon les instructions des plans.

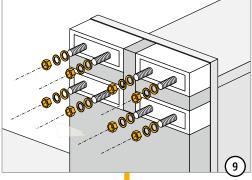
Recommandations de mise en oeuvre

- ② Le coffrage du balcon de la façade existante doit impérativement être étanche, de façon à ce que le béton de scellement ne s'infiltre pas lors du scellement du joint.
- ② La jointure de scellement doit être comblée avec du béton de scellement (par ex. Cugla®). L'exécution doit être réalisée conformément aux instructions du fabricant. Une fois le béton de scellement durcit, la fabrication de la dalle de balcon peut commencer.
- 4 Vérifier l'intégralité de l'armature de recouvrement structurale indispensable conformément au plan d'exécution du bureau d'étude auteur de la structure.
- Côté balcon, des étriers sont nécessaires conformément au plan de calepinage en tant qu'armature de suspension.
- Côté balcon, 1 barre d'acier ≥ Ø 8 mm est nécessaire en haut et en has

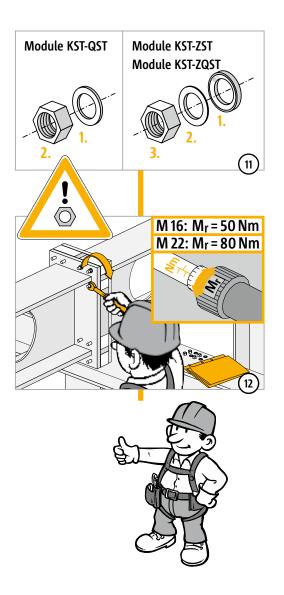

Le montage de l'armature de recouvrement pour le Schöck Isokorb® dans la dalle de balcon doit être effectué conformément aux instructions du plan d'exécution.

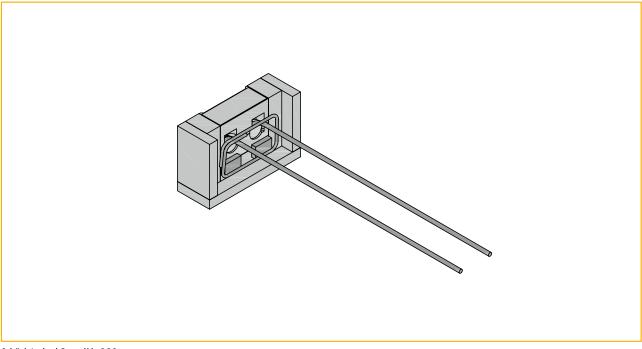

- (3) + (3) + (2) L'armature de recouvrement structurale doit être raccordée de façon appropriée avec le Schöck Isokorb®. Avant de couler le béton, vérifier:
- L'armature de recouvrement
- L'enrobage béton
- Contre-flèche de la dalle en porte-à-faux
- © Couler le béton et vibrer la dalle de béton de façon appropriée.Qualité du béton selon instructions dans le plan d'exécution.


Schöck Isokorb® modèle KST



- ① + ② Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
 - Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®. Vérifier l'intégralité des équipements de protection individuelle pour le montage du Schöck Isokorb® conformément aux dispositions légales.
- ③ Disposition du Schöck Isokorb® conformément au plan d'exécution.


- ④ Vérifier l'intégralité du module Schöck Isokorb® et l'isolation thermique intermédiaire conformément au plan d'exécution.
- ⑤ Montage du module Schöck Isokorb® sur la platine frontale de la poutre métallique à l'intérieur de l'enveloppe de bâtiment conformément au plan d'exécution.
- ⑤ Fixation du module Schöck Isokorb® à l'aide des rondelles et des écrous compris à la livraison dans l'ordre et selon le groupe d'appartenance du module Schöck Isokorb® conformément à l'illustration.
- ① Serrer les écrous sur la platine frontale sans précontrainte définie à l'aide d'une clé dynamométrique conformément au couple de serrage des tiges prescrit.


- ® Montage de l'isolation thermique intermédiaire sur la platine frontale de la poutre métallique entre chaque module Schöck Isokorb®.
- Retirer les écrous et les rondelles avant de lier la poutre métallique extérieure.
- Mamener la poutre métallique extérieure avec platine frontale sur le raccordement pour poutre préparé au préalable avec le module Schöck Isokorb® et les pièces d'isolation thermique. La poutre métallique extérieure doit être amenée de façon à ne pas entraîner de contraintes lors de l'emboîtement dans les boulons du Schöck Isokorb®.

- (1) Fixation de la poutre métallique sur le module Schöck Isokorb® à l'aide des rondelles et des écrous compris à la livraison dans l'ordre et selon le groupe d'appartenance du module Schöck Isokorb® conformément à l'illustration.
- ® Serrer les écrous sur la platine frontale sans précontrainte définie à l'aide d'une clé dynamométrique conformément au couple de serrage des tiges prescrit.

RQS

Schöck Isokorb® modèle RQS

Schöck Isokorb® modèle RQS

Tableau pour entrepreneur / Remarques concernant le montage

Schöck Isokorb® modèle		RQS8	RQS10	RQS12			
		Aciers d'effort tranchant	Aciers d'effort tranchant	Aciers d'effort tranchant			
Nombre de trous forés		2	2	2			
Diamètre des trous forés d _o [mm]		12	14	16			
Profondeur de pose nécessaire l _v [mm]		510	695	825			
Surface de la face frontale de la dalle nécessaire		rugueux	rugueux cranté				
Quantité Hilti HIT-RE 500 (selon instructions de pose) [ml]		80	130	180			
	160	1,8					
Quantité de béton de scellement [l] pour une hauteur d'Isokorb®	180	2,0					
H [mm]	200	2,2					
[]	220	2,5					

Remarques concernant le mortier d'injection Hilti HIT-RE 500 et le béton de scellement (par ex. Cugla®), voir page 81.

Remarques concernant le montage

Le montage du Schöck Isokorb® modèle R doit être effectué en étroite collaboration avec l'architecte et le bureau d'études en charge de la structure. Les instructions de montage de Schöck Isokorb® modèle RQS (voir pages suivantes) doivent être respectées.

Les instructions de montage de Schöck Isokorb® modèles RQS doivent être respectées:

- 1. Instructions de montage sans texte (présentes sur tous les Isokorb® modèles R)
- 2. Instructions de montage avec consignes sur le montage (font partie intégrante de chaque livraison)

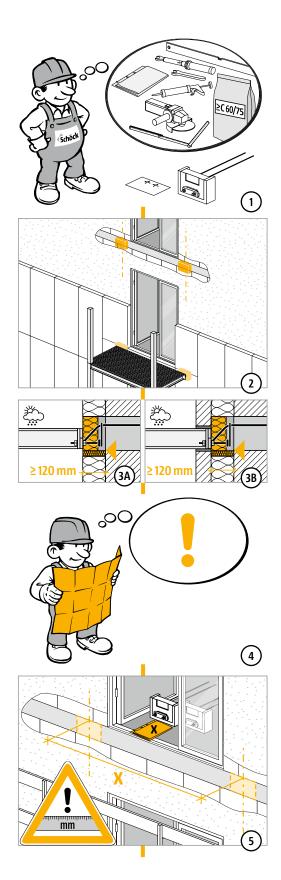
La position et les distances de l'armature existante doivent être vérifiées (si elles ne sont pas connues).

La face frontale de la dalle existante doit être façonnée dans la zone de raccordement du Schöck Isokorb® R en tant que joint ruqueux ou cranté (selon le modèle Isokorb®).

L'exécution des raccordements d'armature avec du mortier selon ETA-08/0105 liées avec le Schöck Isokorb® R ne peut être réalisée que par des ouvriers formées par Hilti.

Respecter les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500». (procédés de perçage admis: perçage à percussion avec dispositif d'aide au perçage.)

Utiliser le gabarit de perçage correspondant au Schöck Isokorb® R.

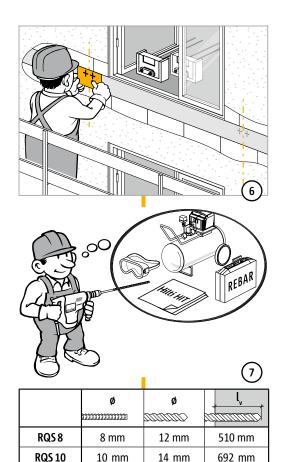

En cas de perçage sur une armature existante, stopper le perçage immédiatement. Le trou erroné (diamètre du trou d_0) doit être comblé avec l'HIT-RE 500 et un nouveau trou doit être percé à une distance d'au moins $2d_0$.

Lors du colmatage de la jointure de scellement avec du béton de scellement, les directives correspondantes du fabricant concernant le traitement du béton de scellement doivent être respectées.

Important:

Seuls des écarts verticaux peuvent être compensés par construction par le Schöck Isokorb® modèle RQS lors du montage ultérieur des éléments en acier. La tolérance est de: +10 mm à la verticale et ±0 mm à l'horizontale. C'est pourquoi l'Isokorb® modèle RQS doit être posé selon des dimensions précises.

Recommandations de mise en oeuvre

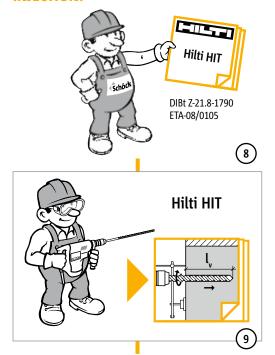


Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur. Les plans doivent être disponibles sur le chantier.

Le personnel impliqué dans la fabrication des liaisons rapportées de la dalle du balcon doit avoir été formé à l'utilisation du système d'injection Hilti HIT-RE 500. La formation peut être effectuée sur demande auprès de la société Hilti. Pour chaque raccordement d'armature, un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500».

- Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
- Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®.
- ① + ② Les éléments suivants sont nécessaires pour le montage de l'Isokorb:
- Schöck Isokorb® modèle RQS
- Instructions de montage Schöck
- Gabarit de perçage pour Schöck Isokorb®
- ▶ Plans du projet, composants inclus
- Béton de scellement (par ex. Cugla®)
- Système d'injection Hilti HIT-RE 500 pour les raccordements d'armatures
- ► Homologation Hilti HIT-RE 500 ETA-08/0105
- Meuleuse d'angle pour rendre rugueuse la face frontale de la dalle
- Produit d'étanchéité pour l'étanchéification du cadre de scellement
- Outils pour le montage:
- ③ Remarques concernant le montage du Schöck Isokorb®:
- Le Schöck Isokorb® doit être posé avec une isolation ≥ 80 mm et une jointure de scellement de 40 mm pour une largeur totale ≥ 120 mm.
- S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.
- 4 Les points suivants doivent apparaître sur le plan d'exécution:
- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres dans le mortier en fonction du modèle Isokorb® utilisé (voir ff)
- Mesures des longueurs de marquage l_m et l_v ou l_{e, ges} sur l'extension mixte Hilti HIT-RE 500 selon agrément ETA-08/0105, annexe 18.
- Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.
- ⑤ Marquage des lits de montage Avant le perçage, la position de l'armature de la dalle existante doit être connue par rapport aux trous à percer.

Recommandations de mise en oeuvre

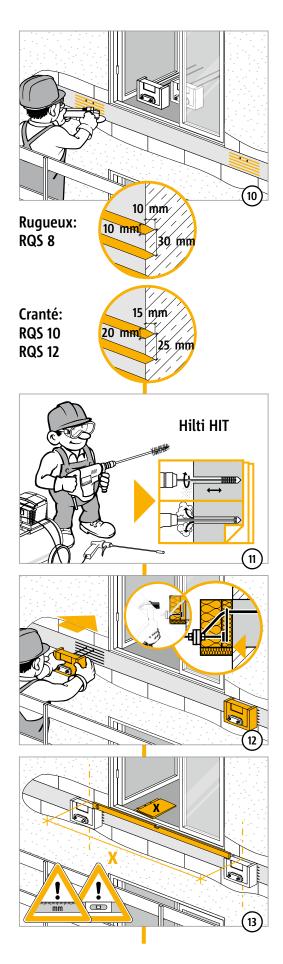

INJECTION:

RQS 12

12 mm

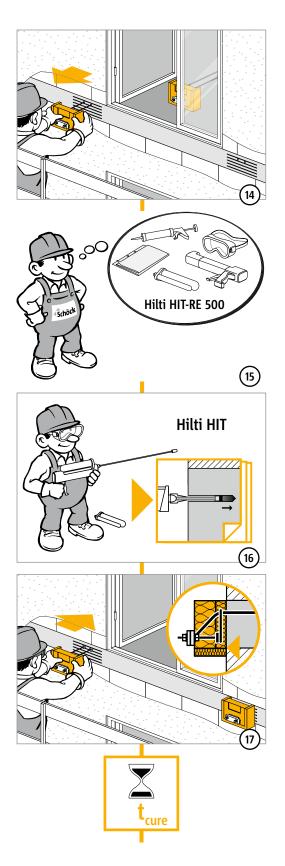
16 mm

824 mm

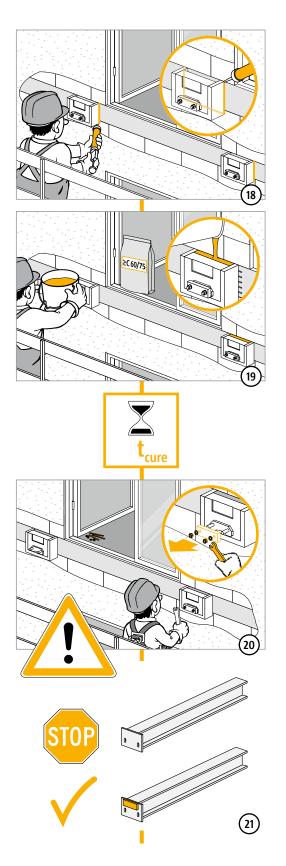

- ® Marquage des perforations: En utilisant le gabarit de perçage Schöck, marquer la position des trous sur la face frontale de la dalle existante conformément aux instructions du plan d'exécution.
- ① Le collage du Schöck Isokorb® sur la dalle existante doit être effectué avec le système d'injection Hilti HIT-RE 500 .
 La manipulation du système d'injection Hilti HIT-RE 500 s'effectue selon le ETA-08/0105 «Scellement d'armatures rapportées avec du mortier d'injection Hilti HIT-RE 500" et selon Zulassung Z-21.8-1790.

Le diamètre des trous et la profondeur de pose dépendent du modèle d'Isokorb®. Veuillez respecter les valeurs du tableau.

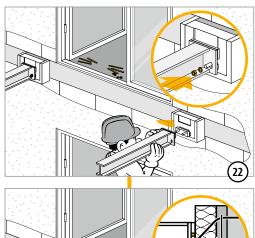
- ® En cas de trous et d'utilisation du Hilti-HIT RE 500, l'exécuteur doit être formé en conséquence.
- Le trou doit être percé à l'aide d'un dispositif de perçage à percussion avec dispositif d'aide au perçage conformément aux instructions de pose de ETA-08/105.

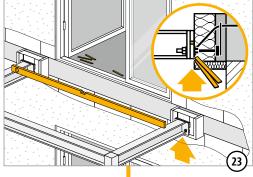

Les trous doivent être percés sans endommager l'armature. En cas de contact avec l'armature ou de forages abandonnés, prévenir immédiatement le chef de chantier responsable et, le cas échéant, le bureau d'étude auteur de la structure. Des mesures correctives adaptées doivent être prises.

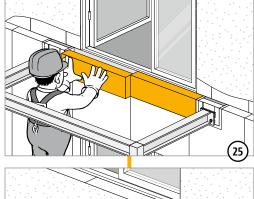
En cas de mauvaise perforation, les trous doivent être comblés par du mortier dans les règles de l'art.


- ® Dans la zone du Schöck Isokorb®, la face frontale de la dalle existante doit être traitée conformément au croquis ci-contre et selon NBN-EN 1992.
 - La profondeur de rugosité de la surface pour RQS 8 doit être $R_{.} \ge 1,5$ mm.
 - La profondeur de rugosité de la surface pour RQS 10 et RQS 12 doit être R, ≥ 3,0 mm.
- ① Conformément aux directives techniques de l'ETA-08/0105 et Zulassung Z-21.8-1790, chaque trou foré doit être nettoyé.
- ® Après que les trous forés ont été nettoyés, le montage à sec du Schöck Isokorb® est effectué à des fins d'inspection. Le Schöck Isokorb® doit pouvoir être utilisé sans effort mécanique important.
- Wérifier à nouveau la hauteur et l'alignement du lit ainsi que les écarts entre chaque élément du Schöck Isokorb® conformément aux instructions du plan d'exécution Les tolérances dimensionnelles maximales admissibles doivent impérativement être respectées.

Recommandations de mise en oeuvre

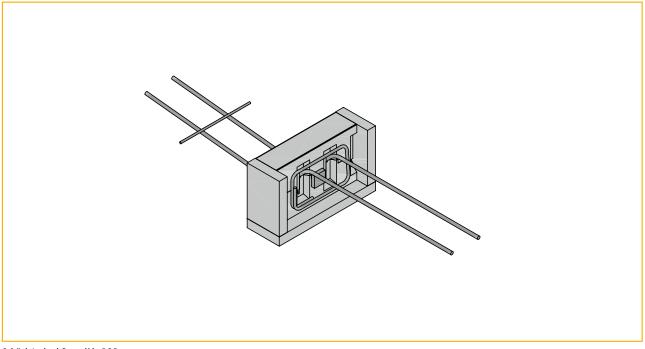

- W Une fois que le lit du Schöck Isokorb® a été contrôlé, le Schöck Isokorb® est démonté.
- ® La préparation de la pince cartouche du système d'injection doit être effectuée conformément aux instructions techniques de ETA-08/0105.
- Le trou doit être comblé avec du mortier d'injection Hilti HIT-RE 500 sans former de bulles d'air conformément aux instructions techniques de ETA-08/0105.
- ① Étapes du montage du Schöck Isokorb®:
- ▶ 1. Si nécessaire, monter le dispositif d'aide au montage pour la durée de durcissement du Hilti HIT-RE 500.
- 2. Combler les trous, (à chaque fois pour un seul élément Isokorb®).
- 3. Le Schöck Isokorb® doit ensuite être placé immédiatement dans le trou


S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.


- (®) Une fois le temps de durcissement «t_{cure}» atteint selon les instructions techniques de ETA-08/0105, le travail sur le Schöck Isokorb® peut reprendre.
 - Le joint de raccordement entre le Schöck Isokorb® et la façade existante doit impérativement être étanche, de façon à ce que le béton de scellement ne s'infiltre pas lors du scellement du joint.
- ® La jointure de scellement doit être comblée avec du béton de scellement (par ex. Cugla®). L'exécution doit être réalisée conformément aux instructions du fabricant. Une fois le béton de scellement durcit, le raccordement de la construction métallique du balcon peut être effectué conformément aux instructions suivantes.
- ② + ② Lors du raccordement de la construction métallique structurale au Schöck Isokorb® veuillez respecter ce qui suit:
- Démontage de la protection de transport.
- Poutre métallique avec platine frontale soudée selon les exigences structurelles.
- Position et taille des trous sur la platine frontale conformément à l'agrément technique du Schöck Isokorb®.
- Un tasseau en acier plat, h = 40 mm, l = 120 mm, t = 15 mm, soudé à la platine frontale est indispensable pour garantir la transmission des efforts tranchants dans le Schöck Isokorb®!

Recommandations de mise en oeuvre

M 16: M_r = 50 Nm



- ② Raccorder la poutre métallique avec platine frontale sur les 2 goujons filetés du Schöck Isokorb® avec des écrous et des rondelles.
- ② Ajustement précis de la hauteur de la poutre métallique entre la plaque de répartition du Schöck Isokorb® et le tasseau soudé a sur la platine frontale de la poutre métallique avec les platines en acier fournies.
- Les écrous du Schöck Isokorb® doivent être serrés sans précontrainte définie; les couples de serrage suivants doivent être appliqués: M16: M_r = 50 Nm
- ® Raccordement de l'isolation thermique de façon étanche aux éléments du Schöck Isokorb®.
- Le joint présent entre les éléments du Schöck Isokorb® et l'isolation thermique adjacent doit être exécuté avec un produit d'étanchéité permanent adapté.

RQP

Schöck Isokorb® modèles RQP et RQP+RQP

Schöck Isokorb® modèle RQP

Schöck Isokorb® modèles RQP et RQP+RQP

Tableaux pour entrepreneur / Remarques concernant le montage

Schöck Isokorb® modèle		RQP10	RQP40	RQP60	RQP70	
		Aciers d'effort tranchant	Aciers d'effort tranchant	Aciers d'effort tranchant	Aciers d'effort tranchant	
Nombre de trous forés		2	2	2	3	
Diamètre des trous forés d _o [mm]		14	14	16	16	
Profondeur de pose nécessaire l _v [mm]		365	511	706	706	
Surface de la face frontale de la dalle nécessaire		rugueux	rugueux	rugueux	rugueux	
Quantité Hilti HIT-RE 500 (selon instructions de pose) [ml]		70	90	150	225	
Quantité de béton de scellement [l] pour une hauteur d'Isokorb® H [mm]	160	1,90				
	180	2,15				
	200	2,40				

Schöck Isokorb® modèle		RQP10+RQP10	RQP40+RQP40	RQP60+RQP60	RQP70+RQP70	
		Aciers d'effort tranchant	Aciers d'effort tranchant	Aciers d'effort tranchant	Aciers d'effort tranchant	
Nombre de trous forés		4	4	4	6	
Diamètre des trous forés d _o [mm]		14	14	16	16	
Profondeur de pose nécessaire l _v [mm]		365	511	706	706	
Surface de la face frontale de la dalle nécessaire		rugueux	rugueux	rugueux	rugueux	
Quantité Hilti HIT-RE 500 (selon instructions de pose) [ml]		140	180	300	450	
Quantité de béton de scellement [l] pour une hauteur d'Isokorb® H [mm]	160	1,90				
	180	2,15				
	200	2,40				

Remarques concernant le mortier d'injection Hilti HIT-RE 500 et le béton de scellement (par ex. Cugla®), voir page 81.

Remarques concernant le montage

Le montage du Schöck Isokorb® modèle R doit être effectué en étroite collaboration avec l'architecte et le bureau d'études en charge de la structure. Les instructions de montage Schöck Isokorb® modèles RQP et RQP+RQP (voir pages suivantes) doivent être respectées.

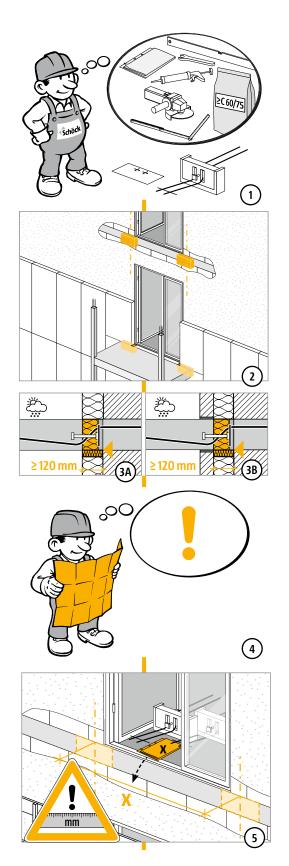
Les instructions de montage de Schöck Isokorb® modèles RQP et RQP+RQP doivent être respectées:

- 1. Instructions de montage sans texte (présentes sur tous les Isokorb® modèles R)
- 2. Instructions de montage avec consignes sur le montage (font partie intégrante de chaque livraison)

La position et les distances de l'armature existante doivent être vérifiées (si elles ne sont pas connues).

La face frontale de la dalle existante doit être façonnée dans la zone de raccordement du Schöck Isokorb® R en tant que joint ruqueux ou cranté (selon le modèle Isokorb®).

L'exécution des raccordements d'armature avec du mortier selon ETA-08/0105 liées avec le Schöck Isokorb® R ne peut être réalisée que par des ouvriers formées par Hilti.


Respecter les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500». (procédés de perçage admis: perçage à percussion avec dispositif d'aide au perçage.)

Utiliser le gabarit de perçage correspondant au Schöck Isokorb® R.

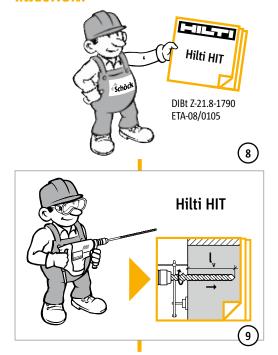
En cas de perçage sur une armature existante, stopper le perçage immédiatement. Le trou erroné (diamètre du trou d_0) doit être comblé avec l'HIT-RE 500 et un nouveau trou doit être percé à une distance d'au moins $2d_0$.

Lors du colmatage de la jointure de scellement avec du béton de scellement, les directives correspondantes du fabricant concernant le traitement du béton de scellement doivent être respectées.

Recommandations de mise en oeuvre

Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur. Les plans doivent être disponibles sur le chantier.

Le personnel impliqué dans la fabrication des liaisons rapportées de la dalle du balcon doit avoir été formé à l'utilisation du système d'injection Hilti HIT-RE 500. La formation peut être effectuée sur demande auprès de la société Hilti. Pour chaque raccordement d'armature, un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500».

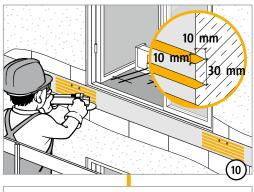

- Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
- Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®.
- ① + ② Les éléments suivants sont nécessaires pour le montage de l'Isokorb:
- Schöck Isokorb® modèle RQP
- Instructions de montage Schöck
- ► Gabarit de perçage pour Schöck Isokorb®
- ▶ Plans du projet, composants inclus
- Béton de scellement (par ex. Cugla®)
- Système d'injection Hilti HIT-RE 500 pour les raccordements d'armatures
- ▶ Homologation Hilti HIT-RE 500 ETA-08/0105
- Meuleuse d'angle pour rendre rugueuse la face frontale de la dalle
- Produit d'étanchéité pour l'étanchéification du cadre de scellement
- Outils pour le montage
- ③ Remarques concernant le montage du Schöck Isokorb®:
- Le Schöck Isokorb® doit être posé avec une isolation ≥ 80 mm et une jointure de scellement de 40 mm pour une largeur totale ≥ 120 mm.
- S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.
- 4 Les points suivants doivent apparaître sur le plan d'exécution:
- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres dans le mortier en fonction du modèle Isokorb® utilisé (voir ff)
- Mesures des longueurs de marquage l_m et l_v ou l_{e,ges} sur l'extension mixte Hilti HIT-RE 500 selon agrément ETA-08/0105, annexe 18.
- Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.
- ⑤ Marquage des lits de montage Avant le perçage, la position de l'armature de la dalle existante doit être connue par rapport aux trous à percer.

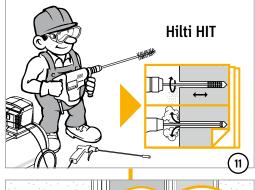
Recommandations de mise en oeuvre

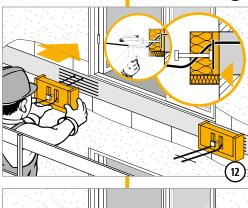
	Ø	ZZZZZZZZZZ	l,
RQP10	2 x 10 mm	14 mm	365 mm
RQP40	2 x 10 mm	14 mm	511 mm
RQP60	2 x 12 mm	16 mm	706 mm
RQP70	3 x 12 mm	16 mm	706 mm

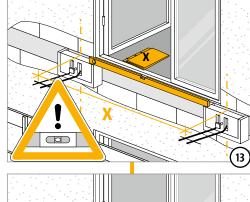
INJECTION:

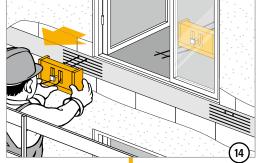
- ® Marquage des perforations: En utilisant le gabarit de perçage Schöck, marquer la position des trous sur la face frontale de la dalle existante conformément aux instructions du plan d'exécution.
- ① Le collage du Schöck Isokorb® sur la dalle existante doit être effectué avec le système d'injection Hilti HIT-RE 500.

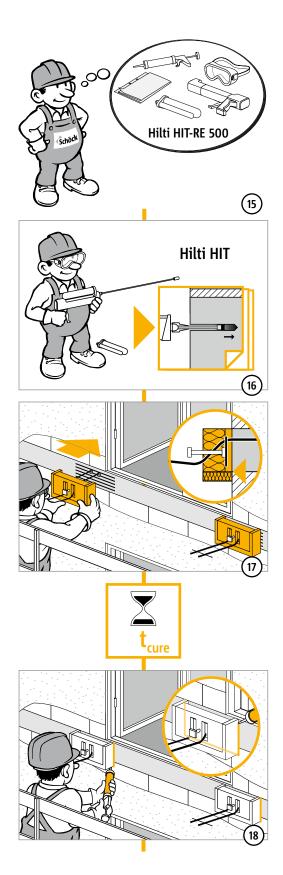

 La manipulation du système d'injection Hilti HIT-RE 500 s'effectue selon le ETA-08/0105 «Scellement d'armatures rapportées avec du mortier d'injection Hilti HIT-RE 500» et selon Zulassung Z-21.8-1790.


Le diamètre des trous et la profondeur de pose dépendent du modèle d'Isokorb®. Veuillez respecter les valeurs du tableau.


- ® Lors de perforations et d'utilisation du Hilti-HIT RE 500, l'exécutant doit être formé en conséquence.
- Le trou doit être percé à l'aide d'un dispositif de perçage à percussion avec dispositif d'aide au perçage conformément aux instructions de pose de ETA-08/105.

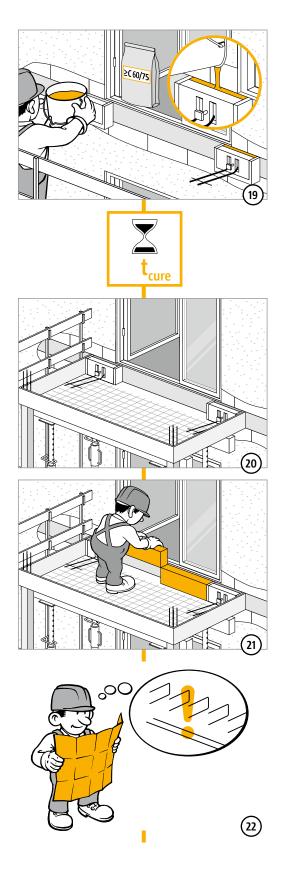

Les trous doivent être percés sans endommager l'armature. En cas de contact avec l'armature ou de forages abandonnés, prévenir immédiatement le chef de chantier responsable et, le cas échéant, le bureau d'étude auteur de la structure. Des mesures correctives adaptées doivent être prises.


En cas de mauvaise perforation, les trous doivent être comblés par du mortier dans les règles de l'art.

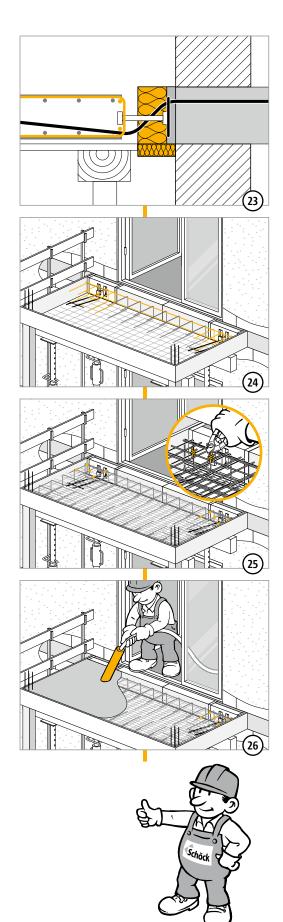


- ® Dans la zone du Schöck Isokorb®, la face frontale de la dalle existante doit être traitée conformément au croquis ci-contre et selon NBN-EN 1992. La profondeur de rugosité de la surface doit être $R_t \ge 1,5$ mm.
- ① Conformément aux directives techniques de l'ETA-08/0105 et Zulassung Z-21.8-1790, chaque trou foré doit être nettoyé.
- ② Après que les trous forés ont été nettoyés, le montage à sec du Schöck Isokorb® est effectué à des fins d'inspection. Le Schöck Isokorb® doit pouvoir être utilisé sans effort mécanique important. Vérifier que la hauteur du lit de chacun des éléments du Schöck Isokorb® d'une dalle de balcon est adaptée.
- Wérifier à nouveau la hauteur et l'alignement du lit ainsi que les écarts entre chaque élément du Schöck Isokorb® conformément aux instructions du plan d'exécution.
- [®] Une fois que le lit du Schöck Isokorb[®] a été contrôlé, le Schöck Isokorb[®] est démonté.

Recommandations de mise en oeuvre

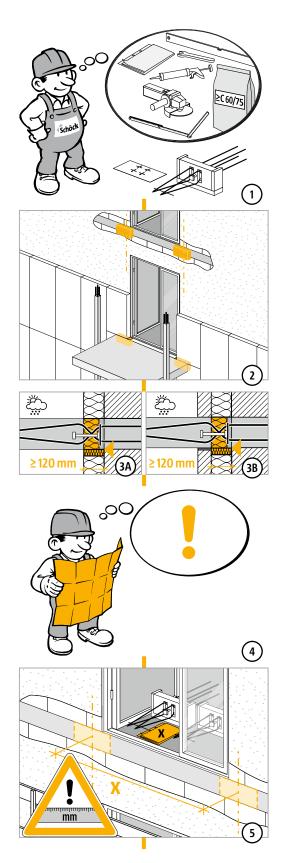


- La préparation de la pince cartouche du système d'injection doit être effectuée conformément aux instructions techniques de ETA-08/0105.
- ® Le trou doit être comblé avec du mortier d'injection Hilti HIT-RE 500 sans former de bulles d'air conformément aux instructions techniques de ETA-08/0105.
- Étapes du montage du Schöck Isokorb®:
- ▶ 1. Si nécessaire, monter le dispositif d'aide au montage pour la durée de durcissement du Hilti HIT-RE 500.
- 2. Combler les trous, (à chaque fois pour un seul élément Isokorb®).
- ▶ 3. Le Schöck Isokorb® doit ensuite être placé immédiatement dans le trou.


S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.

(®) Une fois le temps de durcissement «t_{cure}» atteint selon les instructions techniques de ETA-08/0105, le travail sur le Schöck Isokorb® peut reprendre.

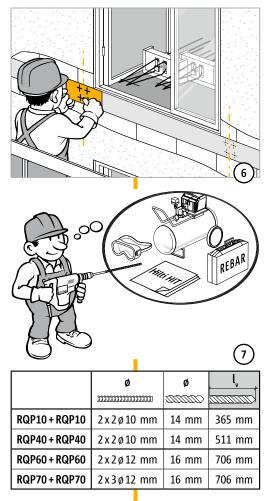
Le joint de raccordement entre le Schöck Isokorb® et la façade existante doit impérativement être étanche, de façon à ce que le mortier de scellement ne s'infiltre pas lors du scellement du joint.



- ® La jointure de scellement doit être comblée avec du béton de scellement (par ex. Cugla®). L'exécution doit être réalisée conformément aux instructions du fabricant. Une fois le béton de scellement durcit, la fabrication de la dalle de balcon peut commencer.
- ② Une fois le montage des éléments du Schöck Isokorb® terminé, le coffrage du balcon et du support est construit.
- ② Montage des bandes d'isolation thermiques structurales conformément au plan d'exécution.
 Les joints des bandes d'isolation thermique et les raccordements au Schöck Isokorb® doivent impérativement être étanches.
- Wérifier l'intégralité de l'armature de recouvrement structurale indispensable conformément au plan d'exécution du bureau d'étude auteur de la structure.

- ② Le montage de l'armature de recouvrement pour le Schöck Isokorb® dans la dalle de balcon doit être effectué conformément aux instructions du plan d'exécution:
- Côté balcon, des étriers sont nécessaires conformément au plan de calepinage en tant qu'armature de suspension.
- Côté balcon, 1 barre d'acier ≥ Ø 8 mm est nécessaire en haut et en bas.
- 4 (a) L'armature de recouvrement côté chantier doit être raccordée de façon appropriée avec le Schöck Isokorb®. Avant de couler le béton, vérifier:
- L'armature de recouvrement
- L'enrobage béton
- © Couler le béton et pervibrer la dalle de béton de façon appropriée. Qualité du béton selon instructions dans le plan d'exécution.

Recommandations de mise en oeuvre



Le raccordement du Schöck Isokorb® doit être conçu par un ingénieur. Les plans doivent être disponibles sur le chantier.

Le personnel impliqué dans la fabrication des liaisons rapportées de la dalle du balcon doit avoir été formé à l'utilisation du système d'injection Hilti HIT-RE 500. La formation peut être effectuée sur demande auprès de la société Hilti. Pour chaque raccordement d'armature, un protocole de montage doit être rédigé: «Protocole de montage Hilti HIT-RE 500».

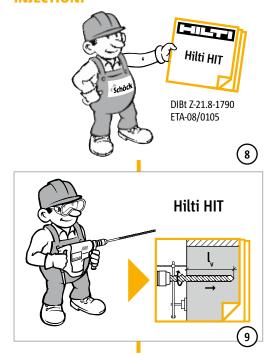
- Vérifier que le Schöck Isokorb® n'est pas endommagé et qu'il est conforme aux plans.
- Vérifier l'intégralité des matériaux de construction pour le montage du Schöck Isokorb®.
- ① + ② Les éléments suivants sont nécessaires pour le montage de l'Isokorb
- Schöck Isokorb® modèle RQP+RQP
- Instructions de montage Schöck
- ► Gabarit de perçage pour Schöck Isokorb®
- ▶ Plans du projet, composants inclus
- Béton de scellement (par ex. Cugla®)
- Système d'injection Hilti HIT-RE 500 pour les raccordements d'armatures
- Homologation Hilti HIT-RE 500 ETA-08/0105 / DIBt Z-21.8-1790
- Meuleuse d'angle pour rendre ruqueuse la face frontale de la dalle
- Produit d'étanchéité pour l'étanchéification du cadre de scellement
- Outils pour le montage
- ③ Remarques concernant le montage du Schöck Isokorb®:
- Le Schöck Isokorb® doit être posé avec une isolation ≥ 80 mm et une jointure de scellement de 40 mm pour une largeur totale ≥ 120 mm.
- S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.
- 4 Les points suivants doivent apparaître sur le plan d'exécution:
- Classe de résistance du béton de la dalle existante
- Dispositif de perçage à percussion avec dispositif d'aide au perçage
- Diamètre, enrobage béton, entraxe et profondeur de pose des barres dans le mortier en fonction du modèle Isokorb® utilisé (voir ff)
- Mesures des longueurs de marquage l_m et l_v ou $l_{e,ges}$ sur l'extension mixte Hilti HIT-RE 500 selon agrément ETA-08/0105, annexe 18.
- Le type de travail préparatoire de la face frontale du composant existant, épaisseur de la couche de béton comprise qui devra être retirée le cas échéant, et en indiquant la profondeur de rugosité.
- S Marquage des lits de montage Avant le perçage, la position de l'armature de la dalle existante doit être connue par rapport aux trous à percer.

Recommandations de mise en oeuvre

® Marquage des perforations:

En utilisant le gabarit de perçage Schöck, marquer la position des trous sur la face frontale de la dalle existante conformément aux instructions du plan d'exécution.

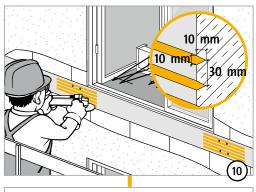
① Le collage du Schöck Isokorb® sur la dalle existante doit être effectué avec le système d'injection Hilti HIT-RE 500. La manipulation du système d'injection Hilti HIT-RE 500 s'effectue selon le ETA-08/0105 «Scellement d'armatures rapportées avec du mortier d'injection Hilti HIT-RE 500» et selon Zulassung Z-21.8-1790.

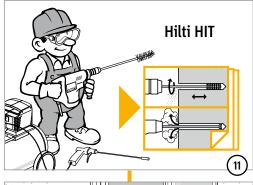

Le diamètre des trous et la profondeur de pose dépendent du modèle d'Isokorb®. Veuillez respecter les valeurs du tableau.

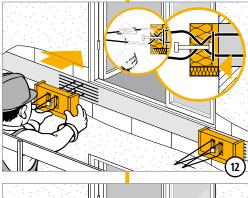
- ® En cas de perforation et d'utilisation du Hilti HIT-RE 500, l'exécutant doit être formé en conséquence.
- Le trou doit être percé à l'aide d'un dispositif de perçage à percussion avec dispositif d'aide au perçage conformément aux instructions de pose de ETA-08/105.

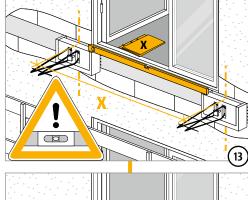
Les trous doivent être percés sans endommager l'armature. En cas de contact avec l'armature ou de forages abandonnés, prévenir immédiatement le chef de chantier responsable et, le cas échéant, le bureau d'étude auteur de la structure. Des mesures correctives adaptées doivent être prises.

En cas de mauvaise perforation, les trous doivent être comblés par du mortier dans les règles de l'art.

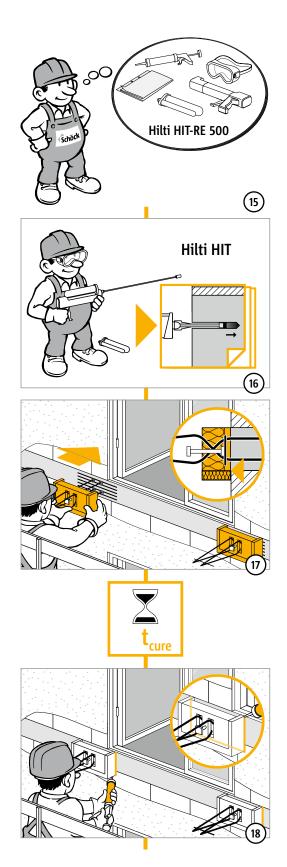

INJECTION:




RQP+ RQP


Exécution des travaux

Schöck Isokorb® modèle RQP+RQP

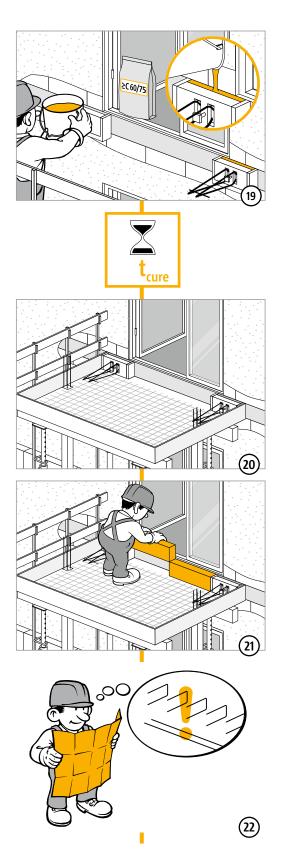


- ® Dans la zone du Schöck Isokorb®, la face frontale de la dalle existante doit être traitée conformément au croquis ci-contre et selon NBN-EN 1992.
 - La profondeur de rugosité de la surface doit être R, ≥ 1,5 mm.
- ① Conformément aux directives techniques de l'ETA-08/0105 et Zulassung Z-21.8-1790, chaque trou foré doit être nettoyé.
- ® Après que les trous forés ont été nettoyés, le montage à sec du Schöck Isokorb® est effectué à des fins d'inspection. Le Schöck Isokorb® doit pouvoir être utilisé sans effort mécanique important. Vérifier que la hauteur du lit de chacun des éléments du Schöck Isokorb® d'une dalle de balcon est adaptée.
- Wérifier à nouveau la hauteur et l'alignement du lit ainsi que les écarts entre chaque élément du Schöck Isokorb® conformément aux instructions du plan d'exécution
- [®] Une fois que le lit du Schöck Isokorb[®] a été contrôlé, le Schöck Isokorb[®] est démonté.

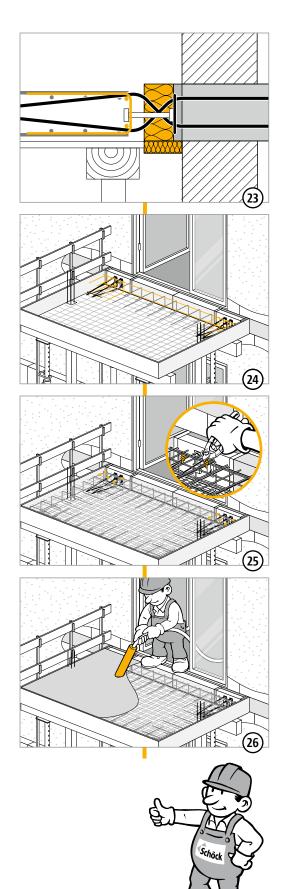
Recommandations de mise en oeuvre

- La préparation de la pince cartouche du système d'injection doit être effectuée conformément aux instructions techniques de ETA-08/0105.
- Le trou doit être comblé avec du mortier d'injection Hilti HIT-RE 500 sans former de bulles d'air conformément aux instructions techniques de ETA-08/0105.
- Étapes du montage du Schöck Isokorb®:
- ▶ 1. Si nécessaire, monter le dispositif d'aide au montage pour la durée de durcissement du Hilti HIT-RE 500.
- 2. Combler les trous, (à chaque fois pour un seul élément Isokorb®).
- ▶ 3. Le Schöck Isokorb® doit ensuite être placé immédiatement dans le trou.

S'assurer que le bord inférieur de la réservation de scellement du Schöck Isokorb® forme une surface plane avec le bord inférieur de la dalle existante.


(®) Une fois le temps de durcissement «t_{cure}» atteint selon les instructions techniques de ETA-08/0105, le travail sur le Schöck Isokorb® peut reprendre.

Le joint de raccordement entre le Schöck Isokorb® et la façade existante doit impérativement être étanche, de façon à ce que le mortier de scellement ne s'infiltre pas lors du scellement du joint.


RQP+ RQP

Exécution des travaux

Schöck Isokorb® modèle RQP+RQP

- ® La jointure de scellement doit être comblée avec du béton de scellement (par ex. Cugla®). L'exécution doit être réalisée conformément aux instructions du fabricant.
 - Une fois le béton de scellement durcit, la fabrication de la dalle de balcon peut commencer.
- ② Une fois le montage des éléments du Schöck Isokorb® terminé, le coffrage du balcon et du support est construit.
- Montage des bandes d'isolation thermiques structurales conformément au plan d'exécution.
 Les joints des bandes d'isolation thermique et les raccordements au
- Schöck Isokorb® doivent impérativement être étanches.
- Wérifier l'intégralité de l'armature de recouvrement structurale indispensable conformément au plan d'exécution du bureau d'étude structure.

- ② Le montage de l'armature de recouvrement pour le Schöck Isokorb® dans la dalle de balcon doit être effectué conformément aux instructions du plan d'exécution:
- Côté balcon, des étriers sont nécessaires conformément au plan de calepinage en tant qu'armature de suspension.
- Côté balcon, 1 barre d'acier ≥ Ø 8 mm est nécessaire en haut et en bas.
- 4 * B L'armature de recouvrement structurale doit être raccordée de façon appropriée avec le Schöck Isokorb®. Avant de couler le béton, vérifier:
- L'armature de recouvrement
- L'enrobage béton
- © Couler le béton et pervibrer la dalle de béton de façon appropriée.Qualité du béton selon instructions dans le plan d'exécution.

Exécution des travaux

Schöck Isokorb® R pour la rénovation Liste de contrôle de l'exécution des travaux

Le montage du Schöck Isokorb® modèle R a-t-il été réalisé en étroite collaboration avec l'architecte et le bureau d'études auteur de la structure?
Les instructions de montage Schöck Isokorb® R sont-elles disponibles sur le chantier? 1. Instructions de monatge sans texte (présentes sur chaque modèle Isokorb® R) 2. Instructions de montage avec consignes de montage écrites (font partie intégrante de chaque livraison)
La position et les distances de l'armature existante sont-elles connues?
Le gabarit de perçage du Schöck Isokorb® R est-il présents sur le chantier?
Le bureau d'étude auteur de la structure a-t-il déterminé si la face frontale de la dalle existante doit être exécutée en tan que joint rugueux ou cranté (en fonction du modèle Isokorb®)?
Le personnel exécutant utilisant le raccordement d'armature Hilti HIT-RE 500 a-t-il été formé en conséquence (ETA 08/0105)?
Les instructions de pose Hilti HIT-RE 500 pour les barres «Raccordements d'armatures ultérieurs avec Hilti HIT-RE 500» sont-elles présentes sur le chantier?
Le formulaire «Protocole de montage Hilti HIT-RE 500» est-il présent sur le chantier?
Les directives de traitement du béton de scellement du fabricant sont-elles présentes sur le chantier?

RQP+ RQP

Mentions légales

Éditeur: Schöck België bvba

Kerkstraat 108 9050 Gentbrugge Tél.: +32 9 261 00 70

Date de délivrance: Janvier 2014

Copyright: © 2014 Schöck België bvba

Tout ou partie du contenu de ce document ne doit pas être diffusé à un tiers sans l'accord écrit de Schöck Bauteile AG. Toutes les données techniques, les schémas, etc. sont soumis à des droits

d'auteur.

Sous réserve de modifications techniques Date d'impression: Janvier 2014

Schöck België bvba Kerstraat 108 9050 Gentbrugge Téléphone: +32 9 261 00 70 Fax: +32 9 261 00 71 info@schock-belgie.be www.schock-belgique.be

