

JÄNNER 2024 BAUPHYSIKALISCHE KENNWERTE

Isokorb® CXT für Stahlbetonkonstruktionen

Tragende Wärmedämmelemente für die effektive Reduktion von Wärmebrücken an auskragenden Bauteilen wie Balkone, Laubengänge und Attiken.

Trittschallschutz

Trittschall-Kennwerte (neues EAD-Prüfverfahren)

Neues standardisiertes Prüfverfahren nach EAD 01 (adopted)

Obwohl es bauaufsichtliche und privatrechtliche Anforderungen an die Trittschalldämmung von Balkonen und Laubengängen gibt, existierte bislang kein konkreter Prüfstandard, um die Trittschalldämmwirkung wärmedämmender Balkonanschlusselemente mit einem geeigneten Prüf- und Messaufbau zu ermitteln.

Seit Anfang 2022 liegt nun mit der überarbeiteten Version 050001-01-0301 (adopted) der EAD für Balkonanschlusselemente erstmalig ein detailliert beschriebenes Standardprüfverfahren zur Messung der Trittschall-Kennwerte von Balkonanschlusselementen vor. Mit diesem neuen EAD-Prüfverfahren ist es erstmalig möglich, Trittschall-Kennwerte von unterschiedlichen Typen und Herstellern zuverlässig miteinander zu vergleichen. Gleichzeitig dienen die Trittschall-Kennwerte als verlässliche Eingangswerte für die rechnerische Prognose des Trittschallschutzes von Balkonen und Laubengängen in der Planungsphase.

Wesentliche Verbesserungen des neuen Prüfverfahrens nach EAD 01 (adopted) im Vergleich zur bisherigen EAD

- Bauakustisch sinnvolle Präzisierung des Prüf- und Messaufbaus sowie der rechnerischen Weiterbehandlung der Messwerte
- "Starre" Referenzmessung am selben Prüfkörper (und nicht mehr an einem zusätzlichen starren Prüfaufbau)
- Neuer Trittschall-Kennwert für Balkonanschlusselemente: Bewertete Trittschallminderung ΔL_w (statt wie bisher bewertete
 Trittschallpegeldifferenz ΔL_{n,v,w})
- Anwendung des Bezugsdeckenverfahrens nach DIN EN ISO 717-2 bei der Ermittlung der bewerteten Trittschallminderung ΔL_w (bisher wurde bei der bewerteten Trittschallpegeldifferenz ΔL_{n,v,w} nur die Differenz der Einzahlwerte L_{n0,w} und L_{n,w} ohne Anwendung des Bezugsdeckenverfahrens angesetzt)
- Bewertete Trittschallminderung ΔL_w Balkonanschlusselement kann in direkter Analogie zur bewerteten Trittschallminderung von Deckenauflagen als Eingangswert für die Prognoseberechnung nach DIN 4109-2 und DIN EN ISO 12354-2 herangezogen werden.

Vergleichbarkeit von Trittschall-Kennwerten, akustische Gleichwertigkeit

Durch das detailliert festgelegte Prüfverfahren nach der neuen EAD 01 (adopted) ist es erstmals möglich, Trittschall-Kennwerte von unterschiedlichen Balkonanschlusselementen auch herstellerübergreifend zuverlässig zu vergleichen – vorausgesetzt, die Trittschall-Kennwerte sind gemäß EAD 01 (adopted) ermittelt. Denn nur die Trittschall-Kennwerte nach EAD 01 (adopted) lassen verlässliche Angaben zur trittschalltechnischen Gleichwertigkeit von Balkonanschlusselementen zu.

Trittschall-Kennwerte in der Ausschreibung

Um sicherzugehen, dass Balkonanschlusselemente mit Trittschall-Kennwerten nach neuer EAD 01 (adopted) verwendet werden, ist es erforderlich, dass bei der Ausschreibung explizit darauf hingewiesen wird, dass die in der Ausschreibung angegeben Trittschall-Kennwerte gemäß neuem EAD-01-adopted-Verfahren vorzulegen sind, z. B. durch Verwendung des folgenden Textbausteins:

"Bewertete Trittschallminderung ΔL_w nach EAD 050001-01-0301 (adopted): ... dB"

■ Vorbereitete Ausschreibungstexte

Für jede Isokorb® Typvariante finden Sie einen vorbereiteten Ausschreibungstext mit dem passenden Trittschall-Kennwert nach EAD 01 (adopted) unter:

www.schoeck.com/download-ausschreibungstexte/at

Trittschall-Kennwerte bei Kombination von Schöck Isokorb® und Belag

Zusätzlicher trittschalldämmender Belag

Ist zur Einhaltung der Trittschallanforderung ein zusätzlicher trittschalldämmender Belag auf der Balkon-, Loggia- oder Laubengangplatte erforderlich, so können die Trittschallminderungswerte Schöck Isokorb® $\Delta L_{Isokorb}$ frequenzweise mit den Trittschallminderungswerten des Belags ΔL_{Belag} addiert werden. Der Einzahlwert der bewerteten Trittschallminderung $\Delta L_{w,ges}$ des Gesamtsystems "Schöck Isokorb® + Belag" ergibt sich aus diesen addierten Trittschallminderungswerten $\Delta L_{ges} = \Delta L_{Belag} + \Delta L_{Isokorb}$ durch Anwendung des Bezugsdeckenverfahrens nach ÖNORM EN ISO 717-2.

Im Deckenauflagenprüfstand nach DIN EN ISO 10140-1 gemessene Balkonbeläge

Für übliche Balkonbeläge (siehe nachfolgende Abbildungen) wurden Messungen der Trittschallminderungen ΔL_{Belag} im Deckenauflagenprüfstand nach DIN EN ISO 10140-1:2016 ("Messung der Schalldämmung von Bauteilen im Prüfstand – Teil 1: Anwendungsregeln für bestimmte Produkte") durchgeführt. Die so ermittelten (frequenzabhängigen) Trittschallminderungswerte ΔL_{Belag} wurden gemäß dem oben beschriebenen Verfahren frequenzweise mit den jeweiligen Trittschallminderungen $\Delta L_{Isokorb}$ addiert und anschließend die bewertete Trittschallminderung $\Delta L_{w,qes}$ des Gesamtsystems Schöck Isokorb® + Belag ermittelt.

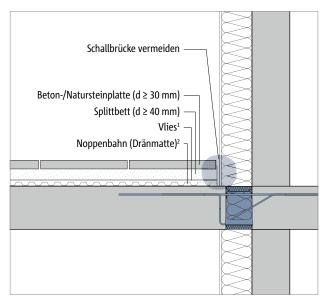


Abb. 1: Balkonbelag mit Beton-/Natursteinplatten, Splittbett, Vlies und Noppenbahn (Dränmatte)

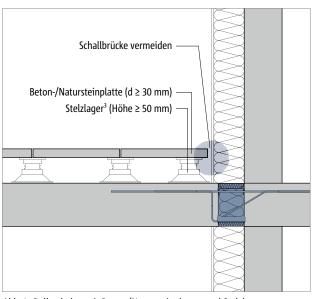


Abb. 2: Balkonbelag mit Beton-/Natursteinplatten und Stelzlager

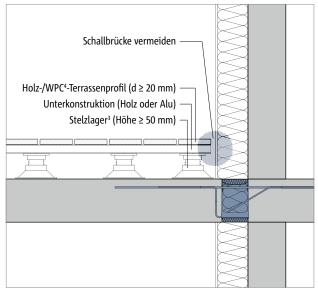


Abb. 3: Balkonbelag mit Holz-/WPC-Terrassenprofilen, Unterkonstruktion (Holz oder Alu) und Stelzlager

II Info

- 1) Erforderlich (Splitt darf nicht in die Noppen rieseln)
- 2) Aus PE-Kunststoff (Noppenhöhe ≥ 8 mm)
- 3) Standard-Stelzlager aus Kunststoff (ohne zusätzliche elastische Schicht)
- 4) Massiv oder Hohlkammer

СХТ Тур	KL 1.1	M1-V1	M1-V2	M2-V1	M2-V2	M3-V1	M3-V2	M3-VV1	M4-V1	M4-V2	M4-V3	M4-VV1
H [mm]	Aufbau						ΔL_w [dB]					
	ohne	12,5	13,8	12,4	13,3	11,9	13,3	8,9	11,7	12,5	8,7	8,7
160–170	Α	19,5	20,8	19,8	20,7	19,8	21,2	16,8	20,2	21,0	17,2	17,2
100-170	В	19,7	21,0	20,0	20,9	20,0	21,4	17,0	20,4	21,2	17,4	17,4
	С	17,4	18,7	17,7	18,6	17,7	19,1	14,7	18,1	18,9	15,1	15,1
	ohne	13,5	14,8	13,4	14,3	12,9	14,3	9,9	12,7	13,5	9,7	9,7
100 100	Α	20,5	21,8	20,8	21,7	20,8	22,2	17,8	21,2	22,0	18,2	18,2
180–190	В	20,7	22,0	21,0	21,9	21,0	22,4	18,0	21,4	22,2	18,4	18,4
	С	18,4	19,7	18,7	19,6	18,7	20,1	15,7	19,1	19,9	16,1	16,1
	ohne	13,5	14,8	13,4	14,3	12,9	14,3	9,9	12,7	13,5	10,7	9,7
200 210	Α	20,5	21,8	20,8	21,7	20,8	22,2	17,8	21,2	22,0	19,2	18,2
200–210	В	20,7	22,0	21,0	21,9	21,0	22,4	18,0	21,4	22,2	19,4	18,4
	С	18,4	19,7	18,7	19,6	18,7	20,1	15,7	19,1	19,9	17,1	16,1
	ohne	14,5	15,3	14,4	14,8	13,9	14,8	10,9	13,7	14,0	11,7	10,7
220 220	Α	21,5	22,3	21,8	22,2	21,8	22,7	18,8	22,2	22,5	20,2	19,2
220–230	В	21,7	22,5	22,0	22,4	22,0	22,9	19,0	22,4	22,7	20,4	19,4
	С	19,4	20,2	19,7	20,1	19,7	20,6	16,7	20,1	20,4	18,1	17,1
	ohne	14,5	15,8	14,5	15,3	14,4	15,3	11,4	14,2	14,5	12,2	11,2
240 250	А	21,5	22,8	21,9	22,7	22,3	23,2	19,3	22,7	23,0	20,7	19,7
240–250	В	21,7	23,0	22,1	22,9	22,5	23,4	19,5	22,9	23,2	20,9	19,9
	С	19,4	20,7	19,8	20,6	20,2	21,1	17,2	20,6	20,9	18,6	17,6

ΔL_w Bewertete Trittschallminderung nach dem Prüfverfahren der neuen EAD 01 (adopted)

Belag A: mit Beton-/Natursteinplatten, Splittbett, Vlies und Noppenbahn (Dränmatte)

Belag B: mit Beton-/Natursteinplatten und Stelzlagern

Belag C: mit Holz-/WPC-Terrassenprofil, Unterkonstruktion (Holz oder Alu) und Stelzlagern

■ Farbig hervorgehobene Werte

Die Werte sind nach dem neuen EAD-01-Verfahren (adopted version) gemessen. Alle anderen Werte sind mit dem von der HfT Stuttgart entwickelten 3D-FE-Verfahren an einem virtuell nachgebauten Prüfkörper in Anlehnung an das EAD-01-Verfahren (adopted version) berechnet worden.

CXT Typ	KL 1.1	M5-V1	M5-V2	M5-V3	M5-VV1	M6-V1	M6-V2	M6-V3	M6-VV1	M7-V1	M7-V2	M7-VV1
H [mm]	Aufbau						ΔL _w [dB]	'				
	ohne	11,4	11,6	8,4	8,4	10,9	10,5	7,9	7,9	9,2	10,0	6,2
160–170	Α	21,6	21,8	18,6	18,6	21,4	21,0	18,4	18,4	20,2	21,0	17,2
100-170	В	20,9	21,1	17,9	17,9	21,0	20,6	18,0	18,0	20,0	20,8	17,0
	С	19,4	19,6	16,4	16,4	19,2	18,8	16,2	16,2	17,8	18,6	14,8
	ohne	12,4	12,6	9,4	9,4	11,9	11,5	8,9	8,9	10,2	11,0	7,2
100 100	Α	22,6	22,8	19,6	19,6	22,4	22,0	19,4	19,4	21,2	22,0	18,2
180–190	В	21,9	22,1	18,9	18,9	22,0	21,6	19,0	19,0	21,0	21,8	18,0
	С	20,4	20,6	17,4	17,4	20,2	19,8	17,2	17,2	18,8	19,6	15,8
	ohne	12,4	12,6	10,4	9,4	11,9	11,5	9,9	8,9	10,2	11,0	7,2
200 210	Α	22,6	22,8	20,6	19,6	22,4	22,0	20,4	19,4	21,2	22,0	18,2
200–210	В	21,9	22,1	19,9	18,9	22,0	21,6	20,0	19,0	21,0	21,8	18,0
	С	20,4	20,6	18,4	17,4	20,2	19,8	18,2	17,2	18,8	19,6	15,8
	ohne	13,4	13,1	11,4	10,4	12,9	12,0	10,9	9,9	11,2	11,5	8,2
220 220	Α	23,6	23,3	21,6	20,6	23,4	22,5	21,4	20,4	22,2	22,5	19,2
220–230	В	22,9	22,6	20,9	19,9	23,0	22,1	21,0	20,0	22,0	22,3	19,0
	С	21,4	21,1	19,4	18,4	21,2	20,3	19,2	18,2	19,8	20,1	16,8
	ohne	13,9	13,6	11,9	10,9	13,4	12,5	11,4	10,4	11,7	12,0	8,7
240 250	Α	24,1	23,8	22,1	21,1	23,9	23,0	21,9	20,9	22,7	23,0	19,7
240–250	В	23,4	23,1	21,4	20,4	23,5	22,6	21,5	20,5	22,5	22,8	19,5
	С	21,9	21,6	19,9	18,9	21,7	20,8	19,7	18,7	20,3	20,6	17,3

- ΔL_w Bewertete Trittschallminderung nach dem Prüfverfahren der neuen EAD 01 (adopted)

Belag A: mit Beton-/Natursteinplatten, Splittbett, Vlies und Noppenbahn (Dränmatte)

Belag B: mit Beton-/Natursteinplatten und Stelzlagern

Belag C: mit Holz-/WPC-Terrassenprofil, Unterkonstruktion (Holz oder Alu) und Stelzlagern

■ Farbig hervorgehobene Werte

Die Werte sind nach dem neuen EAD-01-Verfahren (adopted version) gemessen. Alle anderen Werte sind mit dem von der HfT Stuttgart entwickelten 3D-FE-Verfahren an einem virtuell nachgebauten Prüfkörper in Anlehnung an das EAD-01-Verfahren (adopted version) berechnet worden.

СХТ Тур	KL 1.1	M8-V1	M8-V2	M9-V1	M9-V2
H [mm]	Aufbau		ΔL_{w}	[dB]	
160–170	ohne	8,4	9,0	7,3	8,5
	Α	19,9	20,5	19,2	20,4
	В	19,6	20,2	18,7	19,9
	С	17,5	18,1	16,8	18,0
	ohne	9,4	10,0	8,3	9,5
180–190	Α	20,9	21,5	20,2	21,4
160-190	В	20,6	21,2	19,7	20,9
	С	18,5	19,1	17,8	19,0
	ohne	9,4	10,0	8,3	9,5
200–210	Α	20,9	21,5	20,2	21,4
200-210	В	20,6	21,2	19,7	20,9
	С	18,5	19,1	17,8	19,0
	ohne	10,4	10,5	9,3	10,0
220–230	Α	21,9	22,0	21,2	21,9
220-230	В	21,6	21,7	20,7	21,4
	С	19,5	19,6	18,8	19,5
	ohne	10,9	11,0	9,8	10,5
240 250	Α	22,4	22,5	21,7	22,4
240–250	В	22,1	22,2	21,2	21,9
	С	20,0	20,1	19,3	20,0

ΔL_w Bewertete Trittschallminderung nach dem Prüfverfahren der neuen EAD 01 (adopted)

Belag A: mit Beton-/Natursteinplatten, Splittbett, Vlies und Noppenbahn (Dränmatte)

Belag B: mit Beton-/Natursteinplatten und Stelzlagern

Belag C: mit Holz-/WPC-Terrassenprofil, Unterkonstruktion (Holz oder Alu) und Stelzlagern

■ Farbig hervorgehobene Werte

Die Werte sind nach dem neuen EAD-01-Verfahren (adopted version) gemessen. Alle anderen Werte sind mit dem von der HfT Stuttgart entwickelten 3D-FE-Verfahren an einem virtuell nachgebauten Prüfkörper in Anlehnung an das EAD-01-Verfahren (adopted version) berechnet worden.

Wärmeschutz

CXT Typ KL 1.1	M1-V1		M1-V2		M2-V1		M2	-V2	M3-V1	
H [mm]	R_{eq}	$\lambda_{\sf eq}$	R _{eq}	λ_{eq}						
160	1,429	0,084	1,319	0,091	1,319	0,091	1,224	0,098	1,154	0,104
170	1,481	0,081	1,379	0,087	1,379	0,087	1,277	0,094	1,212	0,099
180	1,519	0,079	1,429	0,084	1,429	0,084	1,333	0,090	1,263	0,095
190	1,579	0,076	1,481	0,081	1,481	0,081	1,379	0,087	1,304	0,092
200	1,622	0,074	1,500	0,080	1,519	0,079	1,429	0,084	1,348	0,089
210	1,667	0,072	1,558	0,077	1,558	0,077	1,481	0,081	1,395	0,086
220	1,714	0,070	1,600	0,075	1,600	0,075	1,500	0,080	1,446	0,083
230	1,765	0,068	1,644	0,073	1,644	0,073	1,538	0,078	1,481	0,081
240	1,791	0,067	1,690	0,071	1,690	0,071	1,579	0,076	1,500	0,080
250	1,846	0,065	1,714	0,070	1,739	0,069	1,622	0,074	1,538	0,078

CXT Typ KL 1.1	M3-V2		M3-VV1		M4-V1		M4-V2		M4-V3	
H [mm]	R_{eq}	$\lambda_{\sf eq}$	R _{eq}	$\lambda_{\sf eq}$						
160	1,053	0,114	0,816	0,147	1,071	0,112	1,000	0,120	0,816	0,147
170	1,091	0,110	0,851	0,141	1,121	0,107	1,053	0,114	0,851	0,141
180	1,143	0,105	0,889	0,135	1,165	0,103	1,081	0,111	0,889	0,135
190	1,188	0,101	0,930	0,129	1,212	0,099	1,132	0,106	0,930	0,129
200	1,224	0,098	0,968	0,124	1,263	0,095	1,165	0,103	0,968	0,124
210	1,277	0,094	1,008	0,119	1,304	0,092	1,212	0,099	1,008	0,119
220	1,319	0,091	1,043	0,115	1,348	0,089	1,250	0,096	1,043	0,115
230	1,348	0,089	1,071	0,112	1,379	0,087	1,290	0,093	1,071	0,112
240	1,395	0,086	1,101	0,109	1,429	0,084	1,333	0,090	1,101	0,109
250	1,429	0,084	1,132	0,106	1,463	0,082	1,364	0,088	1,132	0,106

CXT Typ KL 1.1	M4-VV1		M5-V1		M5-V2		M5	-V3	M5-VV1	
H [mm]	R_{eq}	$\lambda_{\sf eq}$	R_{eq}	λ_{eq}	R _{eq}	λ_{eq}	R_{eq}	λ_{eq}	R _{eq}	λ_{eq}
160	0,811	0,148	1,000	0,120	0,930	0,129	0,682	0,176	0,678	0,177
170	0,845	0,142	1,043	0,115	0,976	0,123	0,714	0,168	0,714	0,168
180	0,889	0,135	1,081	0,111	1,017	0,118	0,750	0,160	0,750	0,160
190	0,923	0,130	1,132	0,106	1,062	0,113	0,784	0,153	0,784	0,153
200	0,960	0,125	1,165	0,103	1,091	0,110	0,822	0,146	0,816	0,147
210	1,000	0,120	1,212	0,099	1,132	0,106	0,845	0,142	0,845	0,142
220	1,034	0,116	1,250	0,096	1,176	0,102	0,876	0,137	0,876	0,137
230	1,062	0,113	1,290	0,093	1,212	0,099	0,909	0,132	0,909	0,132
240	1,091	0,110	1,333	0,090	1,250	0,096	0,938	0,128	0,938	0,128
250	1,132	0,106	1,364	0,088	1,277	0,094	0,968	0,124	0,968	0,124

- R_{eq} Äquivalenter Wärmedurchlasswiderstand in m²•K/W
- λ_{eq} Äquivalente Wärmeleitfähigkeit in W/(m·K)
- Werte ermittelt nach EAD (European Assessment Document): EAD 050001-00-0301 (2018/C 090/04)

CXT Typ KL 1.1	M6-V1		M6-V2		M6-V3		M6-	VV1	M7-V1	
H [mm]	R_{eq}	$\lambda_{\sf eq}$	R_{eq}	λ_{eq}	R_{eq}	$\lambda_{\sf eq}$	R _{eq}	λ_{eq}	R _{eq}	λ_{eq}
160	0,938	0,128	0,876	0,137	0,656	0,183	0,652	0,184	0,706	0,170
170	0,984	0,122	0,923	0,130	0,686	0,175	0,682	0,176	0,741	0,162
180	1,026	0,117	0,960	0,125	0,719	0,167	0,714	0,168	0,779	0,154
190	1,062	0,113	1,000	0,120	0,755	0,159	0,750	0,160	0,816	0,147
200	1,101	0,109	1,043	0,115	0,784	0,153	0,779	0,154	0,845	0,142
210	1,143	0,105	1,071	0,112	0,816	0,147	0,811	0,148	0,876	0,137
220	1,176	0,102	1,111	0,108	0,845	0,142	0,839	0,143	0,909	0,132
230	1,212	0,099	1,143	0,105	0,876	0,137	0,870	0,138	0,945	0,127
240	1,250	0,096	1,176	0,102	0,902	0,133	0,902	0,133	0,976	0,123
250	1,290	0,093	1,212	0,099	0,930	0,129	0,930	0,129	1,008	0,119

CXT Typ KL 1.1	M7	-V2	M7-	VV1	M8	-V1	M8	-V2	M9	-V1	M9	-V2
H [mm]	R _{eq}	$\lambda_{\sf eq}$	R _{eq}	$\lambda_{\sf eq}$	R_{eq}	λ_{eq}	R _{eq}	λ_{eq}	R _{eq}	$\lambda_{\sf eq}$	R _{eq}	$\lambda_{\sf eq}$
160	0,674	0,178	0,645	0,186	0,663	0,181	0,635	0,189	0,569	0,211	0,558	0,215
170	0,710	0,169	0,674	0,178	0,694	0,173	0,667	0,180	0,597	0,201	0,585	0,205
180	0,745	0,161	0,710	0,169	0,727	0,165	0,698	0,172	0,625	0,192	0,615	0,195
190	0,779	0,154	0,741	0,162	0,759	0,158	0,732	0,164	0,656	0,183	0,645	0,186
200	0,811	0,148	0,774	0,155	0,795	0,151	0,759	0,158	0,682	0,176	0,674	0,178
210	0,839	0,143	0,805	0,149	0,822	0,146	0,795	0,151	0,710	0,169	0,698	0,172
220	0,870	0,138	0,833	0,144	0,851	0,141	0,822	0,146	0,741	0,162	0,727	0,165
230	0,902	0,133	0,863	0,139	0,882	0,136	0,845	0,142	0,764	0,157	0,755	0,159
240	0,930	0,129	0,889	0,135	0,916	0,131	0,876	0,137	0,795	0,151	0,779	0,154
250	0,960	0,125	0,923	0,130	0,945	0,127	0,909	0,132	0,822	0,146	0,805	0,149

- R_{eq} Äquivalenter Wärmedurchlasswiderstand in m²•K/W
- Äquivalente Wärmeleitfähigkeit in W/(m·K)
- Werte ermittelt nach EAD (European Assessment Document): EAD 050001-00-0301 (2018/C 090/04)

CXT Typ AP 1.0	MM1	-VV1	Par	t Z
B [mm]	R_{eq}	λ_{eq}	R_{eq}	λ_{eq}
150	0,620	0,193	1,462	0,082
160	0,654	0,184	1,521	0,079
170	0,688	0,174	1,576	0,076
180	0,721	0,166	1,629	0,074
190	0,754	0,159	1,680	0,071
200	0,786	0,153	1,728	0,069
210	0,817	0,147	1,774	0,068
220	0,848	0,141	1,818	0,066
230	0,878	0,137	1,859	0,065
240	0,908	0,132	1,900	0,063
250	0,937	0,128	1,938	0,062
260	0,965	0,124	1,975	0,061
270	0,993	0,121	2,011	0,060
280	1,020	0,118	2,045	0,059

- R_{eq} Äquivalenter Wärmedurchlasswiderstand in m²•K/W
- λ_{eq} Äquivalente Wärmeleitfähigkeit in W/(m·K)
- Werte ermittelt nach EAD (European Assessment Document): EAD 050001-00-0301 (2018/C 090/04)

Impressum

Herausgeber: Schöck Bauteile Ges.m.b.H. Argentinierstraße 22/1/7

1040 Wien

Telefon: 01 7865760

Copyright:

© 2023, Schöck Bauteile Ges.m.b.H.

Der Inhalt dieser Druckschrift darf auch nicht auszugsweise ohne schriftliche Genehmigung der Schöck Bauteile Ges.m.b.H. an Dritte weitergegeben werden. Alle technischen Angaben, Zeichnungen usw. unterliegen dem Gesetz zum Schutz des Urheberrechts.

Technische Änderungen vorbehalten Erscheinungsdatum: Jänner 2024

Schöck Bauteile Ges.m.b.H. Argentinierstraße 22/1/7 1040 Wien Telefon: 01 7865760 office-at@schoeck.com www.schoeck.com